Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thái Viết Nam cách làm đâu?
Giải:
Để A lớn nhất \(\Rightarrow\left|x-2013\right|-2\)nhỏ nhất
Thấy: \(\left|x-2013\right|\ge0\)
\(\Rightarrow\left|x-2013\right|+2\ge0+2=2\)
\(\Rightarrow Max_A=\frac{2026}{2}=1013\)khi
\(\left|x-2013\right|=0\Rightarrow x=2013\)
Vậy: \(x=2013\)
Ta có:\(\left|x-2013\right|\ge0\forall x\Rightarrow\left|x-2013\right|+2\ge2\Rightarrow\frac{1}{\left|x-2013\right|+2}\le\frac{1}{2}\Rightarrow A=\frac{2016}{\left|x-2013\right|+2}\le\frac{2016}{2}=1008\)
Dấu "=" xảy ra khi x = 2013
Vậy GTLN của A = 1008 khi x = 2013
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{x\cdot\left(x+1\right)}=\frac{2020}{2021}\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2020}{2021}\)
\\(1-\frac{1}{x+1}=\frac{2020}{2021}\)
\(\frac{1}{x+1}=1-\frac{2020}{2021}\)
\(\frac{1}{x+1}=\frac{1}{2021}\)
\(\Rightarrow x+1=2021\)
\(x=2021-1\)
\(x=2020\)
đk: \(x\ne\left\{0;-1\right\}\)
Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{2020}{2021}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2020}{2021}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{2020}{2021}\)
\(\Leftrightarrow\frac{x}{x+1}=\frac{2020}{2021}\)
\(\Leftrightarrow2021x=2020x+2020\)
\(\Rightarrow x=2020\)
\(|x-2013|\ge0\Rightarrow|x-2013|+2\ge2>0\) => A lớn nhất khi mẫu nhỏ nhất (bằng 2)
=> Amax = 2026/2 = 1013 khi\(|x-2013|=0\Leftrightarrow x=2013\)
Vì \(\left|x-2013\right|\ge0\forall x\Rightarrow\left|x-2013\right|+2\ge2\forall x\Rightarrow\frac{1}{\left|x-2013\right|+2}\le\frac{1}{2}\Rightarrow A=\frac{2026}{\left|x-2013\right|+2}\le\frac{2026}{2}=1013\)
Dấu "=" xảy ra khi x = 2013
Vậy GTLN của A = 1013 khi x = 2013
Ta có:
\(A=\frac{2026}{\left|x-2013\right|+2}\)
Vì \(\left|x-2013\right|\ge0\)
\(\Rightarrow\left|x-2013\right|+2\ge0+2=2\)
\(\Rightarrow\frac{2026}{\left|x-2013\right|+2}\le\frac{2026}{2}\)\(\left(a>b\Rightarrow\frac{c}{a}< \frac{c}{b}\right)\)
\(\Rightarrow A\le1013\)
Vậy GTLN của A là 1013 khi và chỉ khi |x - 2013| = 0
<=> x - 2013 = 0
<=> x = 2013
Vì \(\left|x-2013\right|\ge0\Rightarrow\left|x-2013\right|+2\ge2\Rightarrow A=\frac{2026}{\left|x-2013\right|+2}\le1013\)
=>A đạt giá trị lớn nhất là 1013 khi \(\left|x-2013\right|=0\Leftrightarrow x-2013=0\Leftrightarrow x=2013\)
Vậy A đạt giá trị lớn nhất là 1013 khi x=2013