Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3+7\)
\(=x^3-8-\left(x^3-3x^2+3x-1\right)+7\)
\(=x^3-8+7-x^3+3x^2-3x+1\)
\(=\left(x^3-x^3\right)+\left(7+1-8\right)+3x^2-3x\)
\(=3x^2-3x=3x\left(x-1\right)\)
\(x\left(x+2\right)\left(2-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=x\left(2+x\right)\left(2-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=x\left(4-x^2\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=4x-x^3+\left(x^3+9\right)\)
\(=4x-\left(x^3-x^3\right)+9\)
\(=4x+9\)
\(\left(x-2\right)\left(x^2-2x+4\right)\left(x+2\right)\left(x^2+2x+4\right)\)
\(=\left(x^3-8\right)\left(x^3+8\right)\)
\(=\left(x^3\right)^2-8^2\)
\(=x^6-64\)
\(\frac{x^2}{x^2+2x+1}\)\(-\)\(\frac{1}{x^2+2x+1}\)\(+\)\(\frac{2}{x +1}\)
= \(\frac{x^2-1+2\left(x+1\right)}{\left(x+1\right)^2}\)= \(\frac{x^2+2x+1}{x^2+2x+1}\)= 1
Answer:
\(\frac{2x+7}{x-3}+\frac{x-4}{x-2}\)
\(=\frac{\left(2x+7\right)\left(x-2\right)+\left(x-4\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)}\)
\(=\frac{2x^2+3x-14+x^2-7x+12}{\left(x-3\right)\left(x+2\right)}\)
\(=\frac{3x^2-4x-2}{\left(x-3\right)\left(x+2\right)}\)
\(2x^7+x^5+2\div x^2+x+1=2x^5-3x^3-3x^2+1\left(dư1-x\right)\)
a, \(\left(2x^3-x^2+5x\right):x=2x^2-x+5\)
b, \(\left(3x^4-2x^3+x^2\right):\left(-2x\right)=-\frac{3}{2}x^3+x^2-\frac{1}{2}x\)
\(\left(2x^3-x^2+5x\right):5=\left(2x^3:x\right)+\left(-x^2:x\right)+\left(5x:x\right)=2x^2-x+5\)
\(\left(3x^4-2x^3+x^2\right):\left(-2x\right)=[3x^4:\left(-2x\right)]+[-2x^3:\left(-2x\right)]+[x^2:\left(-2x\right)]=-\frac{3}{2}x^3+x^2-\frac{x}{2}\)
\(=\left(2x+4\right)\left(2x+7\right)=4x^2+14x+8x+28=4x^2+22x+28\)
4x2+22x+28