Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(x^2-2xy+y^2\right)+7x^2-2\)
\(S=\left(x+1\right)^2+\left(y+1\right)^2+\left(x-y\right)^2-2\ge-2\) vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(x-y\right)^2\ge0\end{cases}}\)
Dấu = xảy ra khi \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\\\left(x-y\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=-1\\x=y=-1\end{cases}}\)
Vậy...
Cách của Kudo là phải mò ra dấu "=" là mới làm được nhé , vậy nếu không mò được thì sao ?
Xét \(2S=4x^2+18y^2-4xy+4x+4y\)
\(=\left(4x^2-4xy+y^2\right)+17y^2+4x+4y\)
\(=\left[\left(2x-y\right)^2+2\left(2x-y\right)+1\right]+17y^2+6y-1\)
\(=\left(2x-y+1\right)^2+17\left(y^2+\frac{6}{17}y+\frac{9}{289}\right)-\frac{26}{17}\)
\(=\left(2x-y+1\right)^2+17\left(y+\frac{3}{17}\right)^2-\frac{26}{17}\ge-\frac{26}{17}\)
\(\Rightarrow S\ge-\frac{26}{17}\div2=-\frac{13}{17}\)
Dấu "=" \(\Leftrightarrow\hept{\begin{cases}2x-y+1=0\\y+\frac{3}{17}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{10}{17}\\y=-\frac{3}{17}\end{cases}}\)
Gọn gàng đẹp mắt =))
\(a,4x^2+9y^2+4x-24y+17=0\)
\(\Rightarrow\left(4x^2+4x+1\right)+\left(9y^2-24y+16\right)=0\)
\(\Rightarrow\left(2x+1\right)^2+\left(3y-4\right)^2=0\)
\(\left(2x+1\right)^2\ge0;\left(3y-4\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(3y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+1=0\\3y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{4}{3}\end{cases}}}\)
a,Đặt A= \(2x^2+2xy+y^2-2x+2y+15\)
\(=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(x^2-4x+4\right)+10\)
\(=\left(x+y+1\right)^2+\left(x-2\right)^2+10\)
Vì \(\left(x+y+1\right)^2\ge0;\left(x-2\right)^2\ge0\Rightarrow\left(x+y+1\right)^2+\left(x-2\right)^2+10\ge0\)
hay \(A\ge10\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y+1=0\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)
Vậy min A=10 khi x=2; y=-3
b/ \(=\left(x^2-2xy+y^2\right)+\left(3x^2-12x+12\right)+\left(8y^2-32y+32\right)-4\)
=\(\left(x-y\right)^2+3\left(x-2\right)^2+8\left(y-2\right)^2-4\ge-4\)
Vậy Min =-4 khi x=y=2
\(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy.\left(x^2-y^2-2y-1\right)\)
\(=2xy.[x^2-\left(y^2+2y+1\right)]\)
\(=2xy.[x^2-\left(y+1\right)^2]\)
\(=2xy.\left(x+y+1\right).\left(x-y-1\right)\)
Vậy chọn đáp án A
xin hỏi bạn có viết lộn không, vế trái không có Z mà tại sao vế phải lại xuất hiện Z vậy