K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2017

\(\left(x^2+y^2+1^2-2xy-2x+2y\right)+\left(y^2+4y+2^2\right)+\left(13-1-4\right)=0\\ \)

\(\left(x-y-1\right)^2+\left(y+2\right)^2+8>0\) Bẫy hả Cái đầu không tồn tại sao có cái sau được

7 tháng 1 2017

câu này không tính dc N ngonhuminh ! can cm nhu bn la dug

6 tháng 3 2019

\(\Leftrightarrow\left(2x-1\right)\left(2x-1+2-x\right)=0\Leftrightarrow\left(2x-1\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=0,5\left(thoaman\right)\\x+1=0\Leftrightarrow x=-1\left(thoaman\right)\end{matrix}\right..Vậy:x\in\left\{\frac{1}{2};-1\right\}\)

11 tháng 4 2016
giup mik vs. Cau nao cux dk
4 tháng 7 2016

  ( x + 1 )2 +3( x - 5)(x+ 5)-( 2x-1)2

=x2 + 2x + 1 + 3(x- 25) - 4x2 - 4x + 1

= x2 + 2x + 1 + 3x- 75 - 4x2 - 4x + 1

= -2x - 73

k cho mk nhe!!

4 tháng 7 2016

( x + 1 )2 +3( x - 5)(x+ 5)-( 2x-1)2

=x2+2x+1+3x2-75-4x2+4x-1

=(x2+3x2-4x2)+(2x+4x)-(1-1)-75

=6x-75

Vậy ms đúng bn kia sai r`

12 tháng 6 2018

5B=-25x2 -20x+5 = 9 - (25x2 +20x +4) = 9- (5x+2)2 \(\le9\)

=> B\(\le\frac{9}{5}\)<=> x=-2/5

12 tháng 6 2018

Tìm GTLN của: \(B=-5x^2-4x+1\)

Ta có 

\(B=-5x^2-4x+1\)

\(B=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)\)

\(B=-5\left[x^2+2x.\frac{2}{5}+\left(\frac{2}{5}\right)^2-\frac{4}{25}-\frac{5}{25}\right]\)

\(B=-5\left[\left(x+\frac{2}{5}\right)^2-\frac{9}{25}\right]\)

\(B=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\)

Mà \(-5\left(x+\frac{2}{5}\right)^2\le0\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{-2}{5}\)

=> \(-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{-2}{5}\)

Vậy B có GTLN bằng \(\frac{9}{5}\)khi \(x=\frac{-2}{5}\).

Tìm GTLN của: \(C=-2x^2+10x+3\)

Ta có

\(C=-2x^2+10x+3\)

\(C=-2\left(x^2-5x-\frac{3}{2}\right)\)

\(C=-2\left[x^2-2x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{25}{4}-\frac{9}{4}\right]\)

\(C=-2\left[\left(x-\frac{5}{2}\right)^2-\frac{17}{2}\right]\)

\(C=-2\left(x-\frac{5}{2}\right)^2+17\)

Mà \(-2\left(x-\frac{5}{2}\right)^2\le0\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{5}{2}\)

=> \(-2\left(x-\frac{5}{2}\right)^2+17\le17\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{5}{2}\)

Vậy C có GTLN bằng 17 khi \(x=\frac{5}{2}\)

26 tháng 11 2017

A=1472-2.47.147+472

A = (147 - 47)2

A = 1002 = 10000

Bài này dùng hằng đẳng thức (A -B)2 = A2 - 2AB +B2 đó ban.

Cững dễ thui. hihi

26 tháng 11 2017

cảm ơn bạn đã giúp nha

Câu 1 : 

\(a,x^3-6x^2+9x\)

\(=x\left(x^2-6x+9\right)\)

\(=x\left(x-3\right)\)

b;c tự lm nha !!! : câu 2 cx vậy 

1.b) x2 - 2xy + 3x - 6y = x2 - 2xy + 3x - 3y x 2

    = (x2 - 2xy) + (3x - 3y) x 2

    = 2x (x - y) + 3 (x - y) x 2

    = (x - y) (2x + 3 x 2)

    = (x - y) (2x + 6)

2.

(2x4 - 3x3 + 3x2 - 3x + 1) : (x2 + 1)

2x4 - 3x3 + 3x2 - 3x + 1      / x2 + 1

2x4          + 2x2                  / 2x2 - 3x + 1

    0 - 3x3 + x2 - 3x + 1      /

       - 3x3         - 3x            /

             0 + x2 + 0  + 1      /

                   x2        + 1      /

                   0

=> đây là phép chia hết

Vậy (2x4 - 3x3 + 3x2 - 3x + 1) : (x2 + 1) = 2x2 - 3x + 1

(Sai thì thôi)

6 tháng 2 2018

a, (3x-1)(x2+2)=(3x-1)(7x-10)

<=>(3x-1)(x2+2)-(3x-1)(7x-10)=0

<=>(3x-1)(x2+2-7x+10)=0

<=>(3x-1)(x2-7x+12)=0

<=>(3x-1)(x2-3x-4x+12)=0

<=>(3x-1)(x-3)(x-4)=0

<=>\(\left[{}\begin{matrix}3x-1=0\\x-3=0\\x-4=0\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)

Vậy ft có tập nghiệm S=\(\left\{\dfrac{1}{3},3,4\right\}\)

b,\(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\) (ĐKXĐ:t\(\ne2;t\ne-3\))

<=>\(\dfrac{\left(t+3\right)^2+\left(t-2\right)^2}{\left(t-2\right)\left(t+3\right)}\)=\(\dfrac{5t+15}{t^2-2t+3t-6}\)

<=>\(\dfrac{t^2+6t+9+t^2-4t+4}{\left(t-2\right)\left(t+3\right)}\)=\(\dfrac{5t+15}{\left(t-2\right)\left(t+3\right)}\)

=>2t2+2t+13=5t+15

<=>2t2+2t-5t+13-15=0

<=>2t2-3t-2=0

<=>2t2-4t+t-2=0

<=>(t-2)(2t+1)=0

<=>\(\left[{}\begin{matrix}t-2=0\\2t+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}t=2\left(loại\right)\\t=\dfrac{-1}{2}\left(tmđkxđ\right)\end{matrix}\right.\)

Vậy ft có nghiệm duy nhất x=\(\dfrac{-1}{2}\)

6 tháng 2 2018

Giải:

a) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)

Chia cả hai vế cho 3x-1, ta được:

\(x^2+2=7x-10\)

\(\Leftrightarrow x^2-7x+10+2=0\)

\(\Leftrightarrow x^2-7x+12=0\)

\(\Leftrightarrow x^2-4x-3x+12=0\)

\(\Leftrightarrow x\left(x-4\right)-3\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

Vậy ...

b) \(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\) (1)

ĐKXĐ: \(t\ne2;t\ne-3\)

\(\left(1\right)\Leftrightarrow\dfrac{\left(t+3\right)\left(t+3\right)}{\left(t-2\right)\left(t+3\right)}+\dfrac{\left(t-2\right)\left(t-2\right)}{\left(t-2\right)\left(t+3\right)}=\dfrac{5t+15}{\left(t-2\right)\left(t+3\right)}\)

\(\Rightarrow\left(t+3\right)^2+\left(t-2\right)^2=5t+15\)

\(\Leftrightarrow t^2+6t+9+t^2-4t+4=5t+15\)

\(\Leftrightarrow2t^2+2t+13=5t+15\)

\(\Leftrightarrow2t^2+2t+13-5t-15=0\)

\(\Leftrightarrow2t^2-3t-2=0\)

\(\Leftrightarrow2t^2-4t+t-2=0\)

\(\Leftrightarrow2t\left(t-2\right)+\left(t-2\right)=0\)

\(\Leftrightarrow\left(2t+1\right)\left(t-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2t+1=0\\t-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{1}{2}\left(tm\right)\\t=2\left(ktm\right)\end{matrix}\right.\)

Vậy ...