Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Do X × ( X - 2012 ) = 0
=>\(\left\{{}\begin{matrix}x=0\\x-2012=0=>x=0+2012=2012\end{matrix}\right.\)
Vậy x∈{0;2012}
b, Do ( 9X + 1017) ( 2X - 2014 ) = 0
=>\(\left\{{}\begin{matrix}9x+1017=0=>9x=0+1017=1017=>x=1017:9=113\\2x-2014=0=>2x=0+2014=2014=>x=2014:2=1007\end{matrix}\right.\)
Vậy x ∈{113;1007}
c, 3x(x+15)=1
=>x(x+15)=0
=>\(\left\{{}\begin{matrix}x=0\\x+15=0=>x=-15\end{matrix}\right.\)
Vậy x ∈ {0;-15}
d, X² - 15X + 14 = 0
=>x2-x-14x+14=0
=>x.(x-1)-14.(x-1)=0
=>(x-1).(x-14)=0
=>\(\left\{{}\begin{matrix}x-1=0=>x=1\\x-14=0=>x=14\end{matrix}\right.\)
Vậy x ∈ {1;14}
e,x4-x2=0
=>x4=x2
=>x=1;0
Vậy x ∈ {1;0}
g, X⁴ - 5X < 0
=>x4<5x
mà không có trường hợp nào như vậy cả
=>x∈∅
\(\left(\frac{2013}{2011}+\frac{2014}{2012}+\frac{2015}{2013}\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)=0\)
\(\left(2x-5\right)^{2018}+\left(3y-8\right)^{2020}\le0\)
Nhận thấy:\(\left(2x-5\right)^{2018}\ge0;\)\(\left(3y-8\right)^{2020}\ge0\)
=> \(\left(2x-5\right)^{2018}+\left(3y-8\right)^{2020}\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-5=0\\3y-8=0\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{8}{3}\end{cases}}\)
Vậy...
xy + 2x + 3y +5 = 0
x(y+2) + 3y +6 - 1 = 0
x(y+2) + 3(y+2) - 1 = 0
(y+ 2 ) (x+3) = 1
\(\Rightarrow\)y+2 và x+3 \(\in\)Ư(1) = { -1 , 1 }
ta có bảng
y+2 | -1 | 1 |
x+3 | -1 | 1 |
y | -3 | -1 |
x | -4 | -2 |
vậy (x,y) \(\in\){ (-4,-3) ; ( -2, -1 ) }
b,xy-x-y-4=0
xy-x-y=4
x(y-1)-y=4
x(y-1)-(y-1)=5
(y-1).(x-1)=5
Vì 5=1.5
5.1
-1.(-5)
-5.(-1)
nên thay vao BT rồi tính
\(1)\frac{1}{5}+\frac{2}{11}< \frac{x}{55}< \frac{2}{5}+\frac{1}{55}\)
\(\Rightarrow\frac{11}{55}+\frac{10}{55}< \frac{x}{55}< \frac{22}{55}+\frac{1}{55}\)
\(\Rightarrow\frac{21}{55}< \frac{x}{55}< \frac{23}{55}\)
\(\Rightarrow21< x< 23\)
\(\Rightarrow x=22\)
\(2)\frac{11}{3}+\frac{-19}{6}+\frac{-15}{2}\le x\le\frac{19}{12}+\frac{-5}{4}+\frac{-10}{3}\)
\(\Rightarrow\frac{22}{6}+\frac{-19}{6}+\frac{-45}{6}\le x\le\frac{19}{12}+\frac{-15}{12}+\frac{-40}{12}\)
\(\Rightarrow\frac{22+\left[-19\right]+\left[-45\right]}{6}\le x\le\frac{19+\left[-15\right]+\left[-40\right]}{12}\)
\(=\frac{-42}{6}\le x\le\frac{-36}{12}\)
\(\Rightarrow-7\le x\le-3\)
\(\Rightarrow x\in\left\{-7;-6;-5;-4;-3\right\}\)