Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (5x+1)2 - (5x-3).(5x+3) = 0
25x2 + 10x + 1 - 25x2 + 9 = 0
10x + 10 = 0
10.(x+1) = 0
=> x + 1 = 0 => x = - 1
b) (x+3).(x2 - 3x + 9) - x.(x-2).(x+2) = 0
x3 + 27 - x.(x2 - 4) = 0
x3 + 27 - x3 + 4x = 0
27 + 4x = 0
4x = - 27
x = -27/4
c) 3x.(x-2) - x + 2= 0
3x.(x-2) - (x-2) = 0
(x-2).(3x-1) = 0
=> x - 2 =0 => x = 2
3x-1 = 0 => 3x = 1 => x = 1/3
d) x.(2x-3) - 2.(3-2x) = 0
x.(2x-3) + 2.(2x-3) = 0
(2x-3).(x+2) = 0
=> 2x - 3 = 0 => 2x = 3 => x = 3/2
x+ 2 = 0 => x = -2
KL:...\
Lời giải:
PT $\Leftrightarrow (2x^2+1)^2-(4x+12)^2+11(2x^2+4x+13)=0$
$\Leftrightarrow (2x^2+1-4x-12)(2x^2+1+4x+12)+11(2x^2+4x+13)=0$
$\Leftrightarrow (2x^2-4x-11)(2x^2+4x+13)+11(2x^2+4x+13)=0$
$\Leftrightarrow (2x^2+4x+13)(2x^2-4x)=0$
\(\Rightarrow \left[\begin{matrix} 2x^2+4x+13=0\\ 2x^2-4x=0\end{matrix}\right.\)
Nếu $2x^2+4x+13=0\Leftrightarrow 2(x+1)^2=-11< 0$ (vô lý)
Nếu $2x^2-4x=0\Leftrightarrow 2x(x-2)=0\Rightarrow x=0$ hoặc $x=2$
\(\left(2x^2+1\right)^2-16\left(x+3\right)^2+11\left(2x^2+4x+13\right)=0\)
...
\(4x^4+10x^2-52x=0\)
\(2x\left(2x^3+5x-26\right)=0\)
\(2x\left(2x^2+4x+13\right)\left(x-2\right)=0\)
\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Tự tính tiếp vs : \(2x^2+4x+13=0\)
a) x2 - x = 0 <=> x(x - 1) = 0 <=> x = 0 hoặc x - 1 = 0 <=> x = 0 hoặc x = 1
Vậy : S = {0; 1}.
b) x2 - 2x = 0 <=> x(x - 2) <=> x = 0 hoặc x - 2 = 0 <=> x = 0 hoặc x = 2
Vậy : S = {0; 2).
(Bài này dễ mà)
4x2-4x-15=0
<=> (2x)2-4x+1-16=0
<=> ((2x)2-2.2x.1+12)-16=0
<=> (2x-1)2-42=0
<=> (2x-1-4)(2x-1+4)=0
<=> (2x-5)(2x+3)=0
<=> \(\left[{}\begin{matrix}2x-5=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
a, \(x^2-2x+3=x^2-x-x+1+2=\left(x-1\right)^2+2\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\)
với mọi giá trị của \(x\in R\).
Để \(\left(x-1\right)^2+2=2\) thì
\(\left(x-1\right)^2=0\Rightarrow x=1\)
Câu c tương tự.
b, \(4x^2+12x-5=4x^2+6x+6x+9-14=\left(2x+3\right)^2-14\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(2x+3\right)^2\ge0\Rightarrow\left(2x+3\right)^2-14\ge-14\)
với mọi giá trị của \(x\in R\).
Để \(\left(2x+3\right)^2-14=-14\) thì
\(\left(2x+3\right)^2=0\Rightarrow2x+3=0\Rightarrow x=-\dfrac{3}{2}\)
Vậy.......................
Câu d tương tự.
Chúc bạn học tốt!!!
\(\left(2x-1\right)^2-\left(x+3\right)^2=0\)
\(=>\left(2x-1+x+3\right)\left(2x-1-x-3\right)=0\)
\(=>\left(3x+2\right)\left(x-4\right)=0\)
\(=>\left[{}\begin{matrix}3x+2=0\\x-4=0\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}3x=-2\\x=4\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=\dfrac{-2}{3}\\x=4\end{matrix}\right.\)
\(=>x\in\left\{\dfrac{-2}{3};4\right\}\)
\(\left(2x-1\right)^2-\left(x+3\right)^2=0\)(sửa đề)
\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)