Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x-3\right)^2-4=0\)
\(\Leftrightarrow\left(x-3\right)^2=4\)
\(\Rightarrow x-3=\pm2\)
\(\hept{\begin{cases}x-3=2\Rightarrow x=5\\x-3=-2\Rightarrow x=1\end{cases}}\)
Vậy \(x=5\)hoặc \(x=1\)
\(b,x^2-2x=24\)
\(\Leftrightarrow x^2-2x+1-1=24\)
\(\Leftrightarrow\left(x-1\right)^2=24+1=25\)
\(\Leftrightarrow x-1=\pm5\)
\(\hept{\begin{cases}x-1=5\Rightarrow x=6\\x-1=-5\Rightarrow x=-4\end{cases}}\)
Vậy \(x=6\) hoặc \(x=-4\)
\(c,\left(2x+1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)
\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow10x+255=0\)
\(\Leftrightarrow10x=-255\)
\(\Leftrightarrow x=\frac{-51}{2}\)
\(d,\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
\(\Leftrightarrow x^3-27+x\left(2x-x^2+4-2x\right)=1\)
\(\Leftrightarrow x^3-27-x^3+4x=1\)
\(\Leftrightarrow4x-27=1\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=7\)
a, \(x^2-25-\left(x+5\right)=0\)
\(\Rightarrow x^2-5^2-\left(x+5\right)=0\)
\(\Rightarrow\left(x-5\right)\times\left(x+5\right)-\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\times\left(x-5-1\right)=0\)
\(\Rightarrow\left(x+5\right)\times\left(x-6\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+5=0\\x-6=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0-5=\left(-5\right)\\x=0+6=6\end{cases}}\)
b, \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)
\(\Rightarrow\left(2x-1\right)^2-\left(\left(2x\right)^2-1^2\right)=0\)
\(\Rightarrow\left(2x-1\right)^2-\left(2x-1\right)\times\left(2x+1\right)=0\)
\(\Rightarrow\left(2x-1\right)\times\left(2x-1-\left(2x+1\right)\right)=0\)
\(\Rightarrow\left(2x-1\right)\times\left(2x-1-2x-1\right)=0\)
\(\Rightarrow\left(2x-1\right)\times\left(-2\right)=0\)\(\Rightarrow\left(-4x\right)+2=0\)
\(\Rightarrow\left(-4x\right)=0-2=-2\)
\(\Rightarrow x=\frac{-2}{-4}=\frac{1}{2}\)
c, \(x^2\times\left(x^2+4\right)-x^2-4=0\)
\(\Rightarrow x^2\times\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\Rightarrow\left(x^2-1\right)\times\left(x^2+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x^2-1=0\\x^2+4=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x^2=1\\x^2=\left(-4\right)\end{cases}}\)
\(\Rightarrow x=1\)
a)Đặt A= \(x^2+2x+11=\left(x+1\right)^2+10\)
vì \(\left(x+1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+1\right)^2+11\ge11;\forall x\)
Hay \(A\ge11>0;\forall x\)
phần b và c mình sẽ giải ra hằng đẳng thức lập luận tương tự phần a
b)\(4x^2+8x+5\)
\(\left(2x\right)^2+2.2x.2+2^2+1\)
\(=\left(2x+2\right)^2+1\)
c) \(x^2+x+2=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)
b)x^3 - 6x^2 +11x-6=0
<=>x^3 - x^2 - 5x^2 +5x + 6x - 6=0
<=>x^2(x - 1) - 5x(x - 1) +6(x - 1)=0
<=>(x-1).(x^2 - 5x + 6)=0
<=>(x - 1).(x^2 - 2x - 3x + 6)=0
<=>(x - 1).[(x(x-2)-3(x-2)]=0
<=>(x-1)(x-2)(x-3)=0
<=>x-1=0hoac x-2=0 hoac x-3=0
<=>x=1hoac x=2 hoac x=3
a/=> 9x2 - 6x + 1 - (9x2 + 12x + 4)=0 => 9x2 - 6x + 1 - 9x2 - 12x - 4 =0 => -18x - 3 =0 => -18x = 3 => x = -1/6 b/=>4x2 + 4x + 1 - (x2 - 2x + 1)=0 => 4x2 + 4x + 1 - x2 + 2x - 1 =0 => 3x2 + 6x =0 => 3x(x+2)=0 => trường hợp 1: 3x=0=>x=0 ; trường hợp 2: x+2=0=>x=-2 c/=> x2 - 2*2*x + 22=0 => (x - 2)2 =0 => x-2=0 => x=2 d/=> x2 - 2*5*x + 52 =0 => (x - 5)2 =0 => x-5=0 => x=5 e/=> 9x2 + 6x - 3 =0 => 9x2 - 3x + 9x - 3 =0 => 3x(3x - 1) + 3(3x - 1) =0 => (3x + 3)(3x - 1) =0 => trường hợp1: 3x+3=0 =>3x=-3=>x=-1 ; trường hợp2: 3x-1=0=>x=1/3
1.a) \(\Leftrightarrow\) 3x+10-2x =0
\(\Leftrightarrow\text{ 3x-2x=-10}\)
\(\Leftrightarrow x=-10\)
b) coi lại có thiếu ngoặc ko nhé
cứ nhân vào dấu ngoặc rồi làm như thường