Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Từ đề bài suy ra
2^x+1.3^y=(3.2^2)^x
2^x+1.3^y=3^x.(2^2)^x.Vì cách phân tích là duy nhất.
2^x+1=2^2x và 3^y=3^x
x+1=2x;y=x
x=y=1
b) 10^x:5^y=20^y
10^x =20^y.5^y
10^x = (20.5)^y
10^x = 100^y
10^x = 10^2y
x = 2y
Vậy x= 2y
a) Ta có: \(2^{x-1}\cdot3^{y+1}=12^{x+y}\)
\(\Leftrightarrow2^{x-1}\cdot3^{y+1}=4^{x+y}\cdot3^{x+y}\)
\(\Leftrightarrow2^{x-1}\cdot3^{y+1}=2^{2x+2y}\cdot3^{x+y}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=2x+2y\\y+1=x+y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1-1=2\cdot1+2y\\x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2+2y=0\\x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=-2\\x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)
\(2^{x+1}.3^y=12^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.4^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.2^{2x}\)
\(\Rightarrow\orbr{\begin{cases}2^{x+1}=2^{2x}\\3^y=3^x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+1=2x\\y=x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\\text{Vì y = x}\Rightarrow y=1\end{cases}}\)
\(\Leftrightarrow2^{x+1}.3^y=2^{2x}.3^x\)
\(\Leftrightarrow\dfrac{2^{2x}.3^x}{2^{x+1}.3^y}=1\Leftrightarrow2^{x-1}.3^{x-y}=1\)
\(\Leftrightarrow\dfrac{2^x3^{x-y}}{2}=1\Leftrightarrow2^x.3^{x-y}=2\)
\(\Leftrightarrow2^x.3^{x-y}=2^1.3^0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Ta có 2x + 1 . 3y = 12x
2x + 1 . 3y = 22x . 3x
⇒ x + 1 = 2x
x = y
Vậy x = y = 1