Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,n-3 chia hết n+3
có n-3 chia hết n+3
<=> n+3-6chia hết n+3
vì n+3 chia hết n+3 nên 6 chia hết n+3
=>n+3 thuộc ước 6 ={1;2;3;6}
=> n = 4;5;6;9
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp chia hết cho 3
tick minh nha
a) \(n-4⋮n-1\)
ta có \(n-1⋮n-1\)
mà \(n-4⋮n-1\)
\(\Rightarrow n-4-\left(n-1\right)⋮n-1\)
\(\Rightarrow n-4-n+1\) \(⋮n-1\)
\(\Rightarrow-3\) \(⋮n-1\)
\(\Rightarrow n-1\in\text{Ư}_{\left(-3\right)}=\text{ }\left\{1;-1;3;-3\right\}\)
lập bảng giá trị
\(n-1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(2\) | \(0\) | \(4\) | \(-2\) |
vậy \(n\in\text{ }\left\{2;0;4;-2\right\}\)
a) n - 4 \(⋮\)n - 1
Ta có : n - 4 = (n - 1) - 3
Do n - 1 \(⋮\)n - 1
Để (n - 1) - 3 \(⋮\)n - 1 thì 3 \(⋮\)n - 1 => n - 1 \(\in\)Ư(3) = {\(\pm1;\pm3\)}
Với : n - 1 = 1 => n = 2
n - 1 = -1 => n = 0
n - 1 = 3 => n = 4
n - 1 = -3 => n = -5
Vậy n = {2; 0 ; 4 ; -5} thì n - 4 \(⋮\)n - 1
ĐỀ LÀ TÌM TẤT CẢ CÁC SỐ NGUYÊN N SAO CHO \(2n+9\)CHIA HẾT \(n-3\)HẢ BẠN
Ta có\(A=\) \(\frac{2n+9}{n-3}=2+\frac{15}{n-3}\)
Để \(A\)Nguyên \(\Leftrightarrow\frac{15}{n-3}\)Nguyên \(\Leftrightarrow\left(n-3\right)\)Là Ước của \(15\)
\(\Rightarrow\)\(n=\)\(\left(-12;-2;0;2;4;6;8;18\right)\)
Ta có: 2n+9 = 2n-6+15 = 2(n-3) +15
vì 2(n-3) chia hết cho n-3 nên 15 chia hết cho n-3
=> n-3 thuộc ước của 15={1;3;5;15}
=>n={4;6;8;18}
a)Để (n+3) chia hết cho (n+3) thì n={0:1:2:3:4:5:6:7:8:9}
b)(2n+5)\(⋮n+2\)
2(n+2)+1 chia hết cho (n+2)
Do 2(n+2)+1 chia hết cho n+2 nên 1 chia hết cho n+2
n+2=Ư(1)={1}
Lập bảng:
n+2 | 1 |
n | loại |
Vậy n=\(\varnothing\)