Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em ms hok cái này nên ko chắc lắm ạ :))
a/ \(\Leftrightarrow2\sin^2x.\cos x+3\sin x-4\sin^3x-4\cos^3x=0\)
Xét \(\sin^3x=0\) ko phải là nghiệm của PT
Xét \(\sin^3x\ne0\)
\(\Leftrightarrow2.\cot x+\frac{3}{\sin^2x}-4-4.\cot^3x=0\)
\(\Leftrightarrow4\cot^3x-3\cot^2x-2\cot x+1=0\)
Sau đó chị giải nghiệm là xong, thú thật e kém về phần gpt b3 trở lên nên sợ sai lắm :))
câu b khá là dài vì phải phân tích cos^3 2x nên ngày mai e giải nốt ạ :))
a, (sinx + cosx)(1 - sinx . cosx) = (cosx - sinx)(cosx + sinx)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx-sinx=1-sinx.cosx\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx+sinx.cosx-1-sinx=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\\left(cosx-1\right)\left(sinx+1\right)=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cosx=1\\sinx=-1\end{matrix}\right.\)
b, (sinx + cosx)(1 - sinx . cosx) = 2sin2x + sinx + cosx
⇔ (sinx + cosx)(1 - sinx.cosx - 1) = 2sin2x
⇔ (sinx + cosx).(- sinx . cosx) = 2sin2x
⇔ 4sin2x + (sinx + cosx) . sin2x = 0
⇔ \(\left[{}\begin{matrix}sin2x=0\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+4=0\end{matrix}\right.\)
⇔ sin2x = 0
c, 2cos3x = sin3x
⇔ 2cos3x = 3sinx - 4sin3x
⇔ 4sin3x + 2cos3x - 3sinx(sin2x + cos2x) = 0
⇔ sin3x + 2cos3x - 3sinx.cos2x = 0
Xét cosx = 0 : thay vào phương trình ta được sinx = 0. Không có cung x nào có cả cos và sin = 0 nên cosx = 0 không thỏa mãn phương trình
Xét cosx ≠ 0 chia cả 2 vế cho cos3x ta được :
tan3x + 2 - 3tanx = 0
⇔ \(\left[{}\begin{matrix}tanx=1\\tanx=-2\end{matrix}\right.\)
d, cos2x - \(\sqrt{3}sin2x\) = 1 + sin2x
⇔ cos2x - sin2x - \(\sqrt{3}sin2x\) = 1
⇔ cos2x - \(\sqrt{3}sin2x\) = 1
⇔ \(2cos\left(2x+\dfrac{\pi}{3}\right)=1\)
⇔ \(cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}=cos\dfrac{\pi}{3}\)
e, cos3x + sin3x = 2cos5x + 2sin5x
⇔ cos3x (1 - 2cos2x) + sin3x (1 - 2sin2x) = 0
⇔ cos3x . (- cos2x) + sin3x . cos2x = 0
⇔ \(\left[{}\begin{matrix}sin^3x=cos^3x\\cos2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\cos2x=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=0\end{matrix}\right.\)
c/
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=1+cos\left(\frac{\pi}{2}-2x\right)\)
\(\Leftrightarrow1-3sin^2x.cos^2x=1+sin2x\)
\(\Leftrightarrow-\frac{3}{4}sin^22x=sin2x\)
\(\Leftrightarrow3sin^22x+4sin2x=0\)
\(\Leftrightarrow sin2x\left(3sin2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sin2x=-\frac{4}{3}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\frac{k\pi}{2}\)
a/
\(\Leftrightarrow cos2x=sin3x\)
\(\Leftrightarrow cos2x=cos\left(\frac{\pi}{2}-3x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-3x+k2\pi\\2x=3x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{10}+\frac{k2\pi}{5}\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow\left(sinx-1\right)\left(2sinx+1\right)\left(sin^2x-2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{2}\\sinx=1-\sqrt{2}\end{matrix}\right.\) \(\Leftrightarrow x=...\)
a/
\(\Leftrightarrow\left(sinx-1\right)\left(sinx-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=1\\sinx=4\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{2}+k2\pi\)
b/
\(\Leftrightarrow\left(cos2x-1\right)\left(2cosx-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow\left(sin3x-\frac{3}{4}\right)^2+\frac{7}{16}=0\)
Vế trái luôn dương nên pt vô nghiệm
Đặt \(x+\dfrac{\pi}{6}=t\Rightarrow x=t-\dfrac{\pi}{6}\Rightarrow3x=3t-\dfrac{\pi}{2}\)
\(2cost=sin\left(3t-\dfrac{\pi}{2}\right)-cos\left(3t-\dfrac{\pi}{2}\right)\)
\(\Leftrightarrow2cost=-cos3t-sin3t\)
\(\Leftrightarrow2cost=3cost-4cos^3t+4sin^3t-3sint\)
\(\Leftrightarrow4sin^3t-3sint+cost-4cos^3t=0\)
\(cost=0\) không phải nghiệm
\(\Rightarrow4tan^3t-3tant\left(1+tan^2t\right)+1+tan^2t-4=0\)
\(\Leftrightarrow tan^3t+tan^2t-3tant-3=0\)
\(\Leftrightarrow\left(tant+1\right)\left(tan^2t-3\right)=0\)
\(\Leftrightarrow...\)
1.
\(\Leftrightarrow cos3x+sin3x-2sin3x.cos3x=0\)
\(\Leftrightarrow cos3x+sin3x-\left(2sin3x.cos3x+1\right)+1=0\)
\(\Leftrightarrow cos3x+sin3x-\left(sin3x+cos3x\right)^2+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin3x+cos3x=\frac{\sqrt{5}+1}{2}\\sin3x+cos3x=\frac{1-\sqrt{5}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(3x+\frac{\pi}{4}\right)=\frac{\sqrt{10}+\sqrt{2}}{4}>1\left(l\right)\\sin\left(3x+\frac{\pi}{4}\right)=\frac{\sqrt{2}-\sqrt{10}}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{\pi}{4}=arcsin\left(\frac{\sqrt{2}-\sqrt{10}}{4}\right)+k2\pi\\3x+\frac{\pi}{4}=\pi-arcsin\left(\frac{\sqrt{2}-\sqrt{10}}{4}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow x=...\)
2.
\(\Leftrightarrow sinx-\left(1+cosx\right)+sin2x=-2\)
\(\Leftrightarrow sinx-cosx+1+sin2x=0\)
\(\Leftrightarrow sinx-cosx-\left(1-2sinx.cosx\right)+2=0\)
\(\Leftrightarrow sinx-cosx-\left(sinx-cosx\right)^2+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=-1\\sinx-cosx=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\\sin\left(x-\frac{\pi}{4}\right)=\sqrt{2}>1\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow x=...\)
Bài này sử dụng kiến thức 12 thì rất dễ chứ lớp 11 thì đúng là chẳng biết biện luận thế nào
\(2\cos^3x=\sin3x\)
\(\Leftrightarrow2\cos^3x=-4sin^3x+3sinx\)
\(\Leftrightarrow2cos^3x+4sin^3x-3sinx=0\)
\(cosx=0\)
\(sinx=\pm1\)
\(\Leftrightarrow0\pm4-+3\ne0\)
\(cosx\ne0\)
\(t=tanx\)
\(\Leftrightarrow,2+4t^3-3\left(t^2+1\right)=0\)
\(4t^3-3t^2-1=0\)
\(\left(t-1\right)\left(4t^2+t+1\right)=0\)
\(t=1\)
\(tanx=tan\left(\frac{\pi}{4+k\pi}\right)\)
\(x=\frac{\pi}{4+k\pi}\left(k\inℤ\right)\)