Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow3\sin x-4\sin^3x+4\cos^3x-3\cos x-2\cos x+2\sin x+1=0\)\(\Leftrightarrow4\left[\left(\cos x-\sin x\right)^3+3\cos x.\sin x\left(\cos x-\sin x\right)\right]-5\left(\cos x-\sin x\right)+1=0\)\(\Leftrightarrow4\left[\left(\cos x-\sin x\right)^3+3\dfrac{\left(\cos x-\sin x\right)^2-1}{2}\left(\cos x-\sin x\right)\right]-5\left(\cos x-\sin x\right)+1=0\)Đặt cosx-sinx=a. Thay vào giải pt ta tìm được: a=1
<=> cosx-sinx=1
\(\Leftrightarrow\cos x.\sin\dfrac{\pi}{4}-\sin x.\cos\dfrac{\pi}{4}=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\sin\left(\dfrac{\pi}{4}-x\right)=\sin\dfrac{\pi}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\pi}{4}-x=\dfrac{\pi}{4}-2k\pi\Rightarrow x=2k\pi\\\dfrac{\pi}{4}-x=\pi-\dfrac{\pi}{4}-2k\pi\Rightarrow x=-\dfrac{\pi}{2}+2k\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=cos3x\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=cos3x\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=3x+k2\pi\\x+\frac{\pi}{3}=-3x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=\frac{\pi}{12}+\frac{k\pi}{2}\end{matrix}\right.\)
d/
\(\Leftrightarrow\frac{1}{2}sin3x-\frac{\sqrt{3}}{2}cos3x=sin2x\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{3}\right)=sin2x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{3}=2x+k2\pi\\3x-\frac{\pi}{3}=\pi-2x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\frac{4\pi}{15}+\frac{k2\pi}{5}\end{matrix}\right.\)
a/
\(\Leftrightarrow\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=sin\left(x+\frac{\pi}{6}\right)\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{6}\right)\)
\(\Rightarrow x+\frac{\pi}{3}=\pi-x-\frac{\pi}{6}+k2\pi\)
\(\Rightarrow x=\frac{\pi}{4}+k\pi\)
b/
\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=sin\frac{\pi}{12}\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)=sin\frac{\pi}{12}\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=\frac{\pi}{12}+k2\pi\\x+\frac{\pi}{6}=\frac{11\pi}{12}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+k2\pi\\x=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
Tham khảo
⇔3sinx−4sin3x+4cos3x−3cosx−2cosx+2sinx+1=0⇔3sin�−4sin3�+4cos3�−3cos�−2cos�+2sin�+1=0⇔4[(cosx−sinx)3+3cosx.sinx(cosx−sinx)]−5(cosx−sinx)+1=0⇔4[(cos�−sin�)3+3cos�.sin�(cos�−sin�)]−5(cos�−sin�)+1=0⇔4[(cosx−sinx)3+3(cosx−sinx)2−12(cosx−sinx)]−5(cosx−sinx)+1=0⇔4[(cos�−sin�)3+3(cos�−sin�)2−12(cos�−sin�)]−5(cos�−sin�)+1=0Đặt cosx-sinx=a. Thay vào giải pt ta tìm được: a=1
<=> cosx-sinx=1
⇔cosx.sinπ4−sinx.cosπ4=1√2⇔cos�.sin�4−sin�.cos�4=12
⇔sin(π4−x)=sinπ4⇔sin(�4−�)=sin�4
⇔⎡⎢⎣π4−x=π4−2kπ⇒x=2kππ4−x=π−π4−2kπ⇒x=−π2+2kπ
ĐKXĐ:...
Biến đổi đoạn trong ngoặc trước cho đỡ rối:
\(cos4x+sin2x=cos\left(3x+x\right)+sin\left(3x-x\right)\)
\(=cos3x.cosx-sin3x.sinx+sin3x.cosx-cos3x.sinx\)
\(=cosx\left(cos3x+sin3x\right)-sinx\left(cos3x+sin3x\right)\)
\(=\left(cosx-sinx\right)\left(cos3x+sin3x\right)\)
Thay vào phương trình:
\(\left(cosx-sinx\right)^2=2\left(sinx+cosx\right)+3\)
\(\Leftrightarrow1-2sinx.cosx=2\left(sinx+cosx\right)+3\)
Đặt \(sinx+cosx=a\Rightarrow-2sinx.cosx=1-a^2\)
\(2-a^2=2a+3\Rightarrow a=-1\Rightarrow sinx+cosx=-1\Rightarrow...\)
Đặt \(x+\dfrac{\pi}{6}=t\Rightarrow x=t-\dfrac{\pi}{6}\Rightarrow3x=3t-\dfrac{\pi}{2}\)
\(2cost=sin\left(3t-\dfrac{\pi}{2}\right)-cos\left(3t-\dfrac{\pi}{2}\right)\)
\(\Leftrightarrow2cost=-cos3t-sin3t\)
\(\Leftrightarrow2cost=3cost-4cos^3t+4sin^3t-3sint\)
\(\Leftrightarrow4sin^3t-3sint+cost-4cos^3t=0\)
\(cost=0\) không phải nghiệm
\(\Rightarrow4tan^3t-3tant\left(1+tan^2t\right)+1+tan^2t-4=0\)
\(\Leftrightarrow tan^3t+tan^2t-3tant-3=0\)
\(\Leftrightarrow\left(tant+1\right)\left(tan^2t-3\right)=0\)
\(\Leftrightarrow...\)