Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, -1+3 - 5 + 7 - ...... +97 - 99
[ - 1+ 3] - [ 5 + 7] - .... - [ 95 + 97] - 99
[2 - 12] - ..... - [184 - 192] - 99
còn lại tự giải
S = 1/5^2 - 1/5^3 +1/5^4 -1/5^5 +... - 1/5^101
5^2.S = 5^2. ( 1/5^2 - 1/5^3 +1/5^4 -1/5^5 +... - 1/5^101)
25 .S =1-1/5^2+1/5^3-1/5^4+..-1/5^100
25S+S = (1-1/5^2+1/5^3-1/5^4+..-1/5^100)+( 1/5^2 - 1/5^3 +1/5^4 -1/5^5 +... - 1/5^101)
26S=1-1/5^101
Bạn tự làm tiếp
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)
\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}=\dfrac{100}{101}\)
c)
\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+....+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{56}\right)\)
\(\left(1+1+1+....+1+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{6\times7}+\frac{1}{7\times8}\right)\)(Có 7 số 1)
\(7+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(7+1-\frac{1}{8}=\frac{63}{8}\)
Gợi ý 1 bài c) còn d) e) cũng làm như vậy nhé
Chúc bạn học tốt !!!
a: x/3-1/6=1/5
=>x/3=11/30
hay x=11/90
b: =>1/2x=2
hay x=4
c: =>2/3:x=-7-1/3=-22/3
=>x=-1/11
Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4A=98.99.100.101
=>A=98.99.100.101/4
=> A=24497550