Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+2+22+......+2100
=>2A=2+2223+......+2100+2101
=>2A-A=(2+22+23+....+2101)-(1+2+22+.....+2100)
=>A=2101-1
B=3+32+...+350
2B=32+33+..+351
2B-B=(32+33+......+351)-(3+32+...+350)
B=351-3
1/ S=1.2+2.3+3.4+...+50.51
=> 3S=1.2.3+2.3.3+3.4.3+...+50.51.3
=> 3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+50.51(52-49)
=> 3S=(1.2.3+2.3.4+3.4.5+...+50.51.52)-(1.2.3+2.3.4+...+49.50.51)
=> 3S=50.51.52 => S=50.51.52:3=44200
Đáp số: 44200
2/ A=12+22+32+42+...+502 = 1(2-1)+2(3-1)+3(4-1)+...+50(51-1)
=> A=(1.2+2.3+3.4+...+50.51)-(1+2+3+...+50)
=> A=S-\(\frac{50\left(50+1\right)}{2}\)=44200-1275
A=42925
Đáp số: 42925
a, Ta có : S = 1*2 + 2*3 +3*4 + .... + 50*51
3S=1*2*3+2*3*3+3*4*3+....+50*51*3
3S=1*2*3+2*3*(4-1)+3*4*(5-2)+....+50*51*(52-49)
3S=1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+...+50*51*52-49*50*51
3S=50*51*52
S=(50*51*52)/3=442000
b,Ta có 12 + 22 + 32 + ....... + n2=\(\frac{n\cdot\left(n+1\right)\cdot\left(2n+1\right)}{6}\)
=> 12 + 22 + 32 + ....... + 502= \(\frac{50\cdot\left(50+1\right)\cdot\left(2\cdot50+1\right)}{6}\)
=\(\frac{50\cdot51\cdot101}{6}\)= 42925
2B = 2^2 +3^2+4^2 + ....+51^2
2B-B= 2^2+3^2+4^2+....+51^2 - 1^2 +2^2 + 3^2 +....+50^2
B= 51^2-1^2
= 50^2
=2500
2C = 3^2+4^2+......+ 51^2
2C-C= 3^2+4^2+....+51^2-2^2+3^2+.....+50^2
C= 51^2-2^2
C= 49^2
2D=2^2+3^2+4^2+......+ 50^2
2D-D= 2^2+3^2+......+50^2-1^2+2^2+....+49^2
D= 50^2- 1^2
D= 49^2
A = 1 + 2 + 22 +... + 250
2A = 21 + 22 + 23 + ... + 251
2A - A = ( 21 + 22 + 23 + ... + 251 ) - (1 + 2 + 22 +... + 250)
A = 251 - 1
A = 2 + 22 + 23 + 24 + ... + 250
2A = 22 + 23 + 24 + 25 + ... + 251
2A - A = (22 + 23 + 24 + 25 +...+ 251) - (2 + 22 + 23 + 24 + ... + 250)
A = 22 + 23 + 24 + 25 +...+ 251 - 2 - 22 - 23 - 24 - ... - 250
A = (22 - 22) + (23 - 23) + (24 - 24) + (25 - 25) +..+(25 - 250)+ (251 -2)
A = 251 - 2