Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:Tìm x biết
(4x+3)3+(5−7x)3+(3x−8)3=0\" id=\"MathJax-Element-4-Frame\">\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)
\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)
\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)
\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)
\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)
=(m+1)(m+7)*(m+3)(m+5)+15=(m+8m+7)(m+8m+15)+15
=(m+8m+11-4)(m+8m+11+4)+15=(m+8m+11)2-16+15
=(m+8m+11)2-1=(m+8m+11+1)(m+8m+11-1)=(m+8m+12)(m+8m+10)
(m+1)(m+3)(m+5)(m+7)+15
phân tích đa thức thành nhân tử :
(m+2)(m+6)(m\(^2\)+8m+10)
a) Ta có:
\(\frac{1}{2\left(m+1\right)}+\frac{1}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3m+2}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(m+1\right)\left(3m+2\right)}\)
\(+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3m+3}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3\left(m+1\right)}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3}{2\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3\left(8m+5\right)}{2\left(3m+2\right)\left(8m+5\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{24m+15}{2\left(3m+2\right)\left(8m+5\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{24m+16}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{8\left(3m+2\right)}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{8}{2\left(8m+5\right)}=\frac{4}{8m+5}\left(đpcm\right)\)
b) Ta có: \(\frac{1}{m+1}+\frac{1}{3m+2}+\frac{1}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{3m+2}{\left(m+1\right)\left(3m+2\right)}+\frac{m+1}{\left(m+1\right)\left(3m+2\right)}\)
\(+\frac{1}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{4m+4}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{4\left(m+1\right)}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{4}{3m+2}\left(đpcm\right)\)
P = \(\left(m+1\right)\left(m+3\right)\left(m+5\right)\left(m+7\right)+15\)
P = \(\left(m^2+8m+7\right)\left(m^2+8m+15\right)+15\) (*)
Đặt \(m^2+8m+7=a\)
(*) \(\Leftrightarrow a.\left(a+8\right)+15\)
= \(a^2+8a+15\)
= \(\left(a+3\right)\left(a+5\right)\)
= \(\left(m^2+8m+7+3\right)\left(m^2+8m+7+5\right)\)
= \(\left(m^2+8m+10\right)\left(m^2+8m+12\right)\)
= \(\left(m^2+8m+10\right)\left(m+2\right)\left(m+6\right)⋮\left(m+6\right)\) ( đpcm )