\(\left(m+1\right)\left(m+3\right)\left(m+5\right)\left(m...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

=(m+1)(m+7)*(m+3)(m+5)+15=(m+8m+7)(m+8m+15)+15

=(m+8m+11-4)(m+8m+11+4)+15=(m+8m+11)2-16+15

=(m+8m+11)2-1=(m+8m+11+1)(m+8m+11-1)=(m+8m+12)(m+8m+10)
 

2 tháng 4 2017

(m+1)(m+3)(m+5)(m+7)+15

phân tích đa thức thành nhân tử :

(m+2)(m+6)(m\(^2\)+8m+10)

22 tháng 12 2019

(x+1)(x+3)(x+5)(x+8)+15

=[(x+1)(x+7)][(x+3)(x+5)]+15

=(x2+8x+7)(x2+8x+15)+15

Đặt t=x2+8x+7

=>x2+8x+15=t+8

=>(x2 +8x+7)(x2+8x+15)+15

=t(t+8)+15

=t2+8t+15

=t2+3t+5t+15

=t(t+3)+5(t+3)

=(t+3)(t+5)

=(x2+8x+10)(x2+8x+12)

22 tháng 12 2019

Đặt \(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(\Rightarrow A=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15\)

        \(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(x^2+8x+11=t\)

\(\Rightarrow A=\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t+1\right)\left(t-1\right)\)

\(=\left(x^2+8x+11+1\right)\left(x^2+8x+11-1\right)=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

\(=\left(x^2+2x+6x+12\right)\left(x^2+8x+10\right)\)\(=\left[x\left(x+2\right)+6\left(x+2\right)\right]\left(x^2+8x+10\right)\)

\(=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)

14 tháng 8 2017

a) \(x^2-8y^2+6x+9\)

\(=\left(x^2+6x+9\right)-8y^2\)

\(=\left(x+3\right)^2-\left(\sqrt{8}\cdot y\right)^2\)

\(=\left(x+3+\sqrt{8}y\right)\left(x+3-\sqrt{8}y\right)\)

27 tháng 10 2018

c) Đặt \(A=\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)

Đặt \(x^2+3x+1,5=a\)

\(\Rightarrow A=\left(a-0,5\right)\left(a+0,5\right)-6\)

\(\Rightarrow A=a^2-0,25-6\)

\(\Rightarrow A=a^2-\frac{25}{4}\)

\(\Rightarrow A=\left(a-\frac{5}{2}\right)\left(a+\frac{5}{2}\right)\)

Thay \(a=x^2+3x+0,5\)vào A ta có :

\(A=\left(x^2+3x+0,5-\frac{5}{2}\right)\left(x^2+3x+0,5+\frac{5}{2}\right)\)

\(A=\left(x^2+3x-2\right)\left(x^2+3x+3\right)\)

27 tháng 10 2018

c, Đặt \(x^2+3x+2=a\)

Ta có : \(\left(a-1\right)a-6=a^2-a-6=\left(a^2-3a\right)+\left(2a-6\right)\)

                                                                       \(=a\left(a-3\right)+2\left(a-3\right)\)

                                                                       \(=\left(a+2\right)\left(a-3\right)\)

                                                                        \(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)

Câu d làm tương tự .

Gợi ý : (x+3)(x+5) = x2 + 8x + 15 

đặt bằng a rồi giải tiếp

23 tháng 8 2016

1 ) \(a\left(m+n\right)+b\left(m+n\right)\)

   \(=\left(a+b\right)\left(m+n\right)\)

2 ) \(a^2\left(x+y\right)-b^2\left(x+y\right)\)

   \(=\left(a^2-b^2\right)\left(x+y\right)\)

   \(=\left[\left(a-b\right).\left(a+3\right)\right]\left(x+y\right)\)

3 ) \(6a^2-3a+12ab\)

   \(=3a.2a-3a+3a.4b\)

   \(=3a.\left(2a-1+4b\right)\)

4 ) \(2x^2y^4-2x^4y^2+6x^3y^3\)

   \(=2x^2y^2.y^2-2x^2y^2.x^2+2x^2y^2.3xy\)

    \(=2x^2y^2\left(y^2-x^2+3xy\right)\)

5 ) \(\left(x+y\right)^3-x\left(x+y\right)^2\)

      \(=\left(x+y\right)^2.\left(x+y-x\right)\)

      \(=\left(x+y\right)^2.y\)

      

 

23 tháng 8 2016

1)a(m+n)+b(m+n)

=(a+b)(m+n)

2)a2(x+y)-b2(x+y)

=(a2-b2)(x+y)

3)6a2-3a+12ab

=3a.2a-3a.(1-4b)

=3a.(2a-1+4b)

5)(x+y)3-x(x+y)2

=(x+y)(x+y)2-x(x+y)2

=(x+y)2(x+y-x)

 

1 tháng 10 2017

a)\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)-b\text{[}\left(b^3-c^3\right)+\left(a^3-b^3\right)\text{]}+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)-b\left(b^3-c^3\right)-b\left(a^3-b^3\right)+c\left(a^3-b^3\right)\)

\(=\left(a-b\right)\left(b^3-c^3\right)-\left(b-c\right)\left(a^3-b^3\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)-\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(bc+c^2-a^2-ab\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

2 tháng 11 2016

a)x4+2x3+5x2+4x-12

=(x4+2x3+x2)+(4x2+4x)-12

=(x2+x)2+4(x2+x)-12

Đặt t=x2+x

=t2+4t-12=(t-2)(t+6)

=(x2+x-2)(x2+x+6)

=(x-1)(x+2)(x2+x+6)

b)(x+1)(x+2)(x+3)(x+4)+1

=(x2+5x+4)(x2+5x+6)+1

Đặt x2+5x+4=t

t(t+2)+1=t2+2t+1

=(t+1)2=(x2+5x+4+1)2

=(x2+5x+5)2

c)(x+1)(x+3)(x+5)(x+7)+15

=(x2+8x+7)(x2+8x+15)+15

Đặt t=x2+8x+7

t(t+8)+15=(t+3)(t+5)

=(x2+8x+7+3)(x2+8x+7+5)

=(x2+8x+10)(x+2)(x+6)

d)(x+1)(x+2)(x+3)(x+4)-24

=(x2+5x+4)(x2+5x+6)-24

Đặt t=x2+5x+4 

t(t+2)-24=(t-4)(t+6)

=(x2+5x+4-4)(x2+5x+4+6)

=x(x+5)(x2+5x+10)