Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 1+2-3-4+5+6-7-8+.....-2019-2020+2021+2022
=1+(2-3-4+5)+(6-7-8+9)+.....+(2018-2019-2020+2021)+2022
=1+0+0+.....+0+2022
=2023
\(4^{2021}:\left(4^{2020}+3.4^{2020}\right)=4^{2021}:\left[4^{2020}.\left(1+3\right)\right]\)
\(=4^{2021}:4^{2020}:\left(1+3\right)=4:4=1\)
a) \(M=2020+2020^2+...+2020^{10}\)
\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)
\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)
\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).
b) Bạn làm tương tự câu a).
b, \(A=2021+2021^2+...+2021^{2020}\)
\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)
\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)
Vậy ta có đpcm
A = \(\dfrac{2020}{2021}\) + \(\dfrac{2021}{2022}\) ; B = \(\dfrac{2020+2021}{2021+2022}\)
B = \(\dfrac{2020+2021}{2021+2022}\) = \(\dfrac{2020}{2021+2022}\) + \(\dfrac{2021}{2021+2022}\)
\(\dfrac{2020}{2021}\) > \(\dfrac{2020}{2021+2022}\)
\(\dfrac{2021}{2022}\) > \(\dfrac{2021}{2021+2022}\)
Cộng vế với vế ta có:
A = \(\dfrac{2020}{2021}\) + \(\dfrac{2021}{2022}\) > \(\dfrac{2020}{2021+2022}\) + \(\dfrac{2021}{2021+2022}\) = B
Vậy A > B
A = \(\dfrac{10^{10}-1}{10^{11}-1}\)
A \(\times\) 10 = \(\dfrac{(10^{10}-1)\times10}{10^{11}-1}\) = \(\dfrac{10^{11}-10}{10^{11}-1}\) = 1 - \(\dfrac{9}{10^{11}-1}\) < 1
B = \(\dfrac{10^{10}+1}{10^{11}+1}\)
B \(\times\) 10 = \(\dfrac{(10^{10}+1)\times10}{10^{11}+1}\) = \(\dfrac{10^{11}+10}{10^{11}+1}\) = 1 + \(\dfrac{9}{10^{11}+1}\) > 1
Vì 10 A< 1< 10B
Vậy A < B