Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)
2,
\(M=\dfrac{\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{11}}\) =\(\dfrac{3\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}\)
\(=\dfrac{3}{4}\)
Bài này giải ra dài lắm;
Gợi ý : với câu a) cm 1<A<2
với câ u b) 0<B<1
với câu c) áp dụng bài toán của ông gao í; cách tỉnh tổng từ 1->100 trong sách GK 6 có nhé
Mong bạn giải ra
a) \(6\dfrac{5}{7}-\left(1\dfrac{3}{4}+2\dfrac{5}{7}\right)\)
\(=6\dfrac{5}{7}-1\dfrac{3}{4}-2\dfrac{5}{7}\)
\(=\left(6\dfrac{5}{7}-2\dfrac{5}{7}\right)-1\dfrac{3}{4}\)
\(=4-1\dfrac{3}{4}\)
\(=3\dfrac{3}{4}\)
b) \(7\dfrac{5}{11}-\left(2\dfrac{3}{7}+3\dfrac{5}{11}\right)\)
\(=7\dfrac{5}{11}-2\dfrac{3}{7}-3\dfrac{5}{11}\)
\(=\left(7\dfrac{5}{11}-3\dfrac{5}{11}\right)-2\dfrac{3}{7}\)
\(=4-2\dfrac{3}{7}\)
\(=2\dfrac{3}{7}\)
\(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{2n-1}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2n}\right)=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2n-1}+\frac{1}{2n}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2n}\right)=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n-1}+\frac{1}{2n}-\frac{1}{1}-\frac{1}{2}-....-\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n+2}+....+\frac{1}{2n}\left(\text{đpcm}\right)\)
A = \(\dfrac{4}{3}\) . \(\dfrac{4}{7}\) + \(\dfrac{4}{7}\) . \(\dfrac{4}{11}\) + \(\dfrac{4}{11}\) . \(\dfrac{4}{15}\) + ... + \(\dfrac{4}{95}\) . \(\dfrac{4}{99}\)
A = \(\dfrac{4.4}{3.7}\) + \(\dfrac{4.4}{7.11}\) + \(\dfrac{4.4}{11.15}\) + ... + \(\dfrac{4.4}{95.99}\)
A = \(\dfrac{16}{3.7}\) + \(\dfrac{16}{7.11}\) + \(\dfrac{16}{11.15}\) + ... + \(\dfrac{16}{95.99}\)
A = 4.( \(\dfrac{4}{3.7}\) + \(\dfrac{4}{7.11}\) + \(\dfrac{4}{11.15}\) + ... + \(\dfrac{4}{95.99}\))
A = 4.( \(\dfrac{1}{3}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{11}\) + \(\dfrac{1}{11}\) - \(\dfrac{1}{15}\) + ... + \(\dfrac{1}{95}\) - \(\dfrac{1}{99}\))
A = 4.(\(\dfrac{1}{3}\) - \(\dfrac{1}{99}\))
A = 4.(\(\dfrac{33}{99}\) + \(\dfrac{-1}{99}\))
A = 4. \(\dfrac{32}{99}\)
A = \(\dfrac{4.32}{99}\)
A = \(\dfrac{128}{99}\)
Vậy A = \(\dfrac{128}{99}\)
Tìm x biết:
\(\left(4,5-2x\right).1\dfrac{4}{7}=\dfrac{11}{4}\)
\(\Leftrightarrow\left(4,5-2x\right)=\dfrac{11}{4}:1\dfrac{4}{7}\)
\(\Leftrightarrow4,5-2x=\dfrac{7}{4}\)
\(\Leftrightarrow2x=4,5-\dfrac{7}{4}\)
\(\Leftrightarrow2x=\dfrac{11}{4}\)
Vậy \(x=\dfrac{11}{8}\)
Tìm số nguyên x biết:
Theo đề bài, ta có:
\(4\dfrac{1}{3}\left(\dfrac{1}{6}-\dfrac{1}{2}\right)\le x\le\dfrac{2}{3}\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)\)
\(\Leftrightarrow-\dfrac{13}{9}\le x\le-\dfrac{11}{18}\) hay \(-\dfrac{26}{18}\le x\le-\dfrac{11}{18}\)
\(\Leftrightarrow-1,\left(4\right)\le x\le-0,6\left(1\right)\)
Mà \(x\in Z\) nên x=-1
Vậy x = -1
a, Ta có: \(\dfrac{1}{n}.\dfrac{1}{n+4}=\dfrac{1}{n.\left(n+4\right)}=\dfrac{1}{4}.\dfrac{4}{n.\left(n+1\right)}=\dfrac{1}{4}.\left(\dfrac{1}{n}-\dfrac{1}{n+4}\right)\)
Vậy \(\dfrac{1}{n}.\dfrac{1}{n+1}=\dfrac{1}{4}.\left(\dfrac{1}{n}-\dfrac{1}{n+4}\right)\)
b, \(A=\dfrac{4}{3}.\dfrac{4}{7}+\dfrac{4}{7}.\dfrac{4}{11}+...+\dfrac{4}{95}.\dfrac{4}{99}=4.\left(\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{95.99}\right)\)
\(=4.\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{99}\right)\)
\(=4.\left(\dfrac{1}{3}-\dfrac{1}{99}\right)=4.\dfrac{32}{99}=\dfrac{128}{99}\)
Vậy \(A=\dfrac{128}{99}\)