Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Góp ý :
Mời bạn tham khảo :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Mình sẽ gửi link này về chat riêng cho bạn !
Tham khảo qua đây nè :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017
tk cho mk nhé
Cho các số x, y, z thỏa mãn: x + y + z + xy + xz + yz = 3033
Chứng minh rằng x2 + y2 + z2 >2021
Hép mi
Ta có :
( x - 1 )2\(\ge\)0 => x2 - 2x + 1 \(\ge\)0 => x2 + 1 \(\ge\)2x
Tương tự ta có : y2 + 1 \(\ge\)2y ; z2 + 1 \(\ge\)2z
=> x2 + y2 + z2 + 3 \(\ge\)2 ( x + y + z ) (1)
Lại có : ( x + y + z )2 \(\ge\)0 => x2 + y2 + z2 \(\ge\)2 ( xy + yz + zx ) (2)
Lấy (1) + (2) => 2 ( x2 + y2 + z2 ) + 3 \(\ge\)2 ( x + y + z + xy + yz + zx )
<=> 2 ( x2 + y2 + z2 ) \(\ge\)2.3033 - 3 = 6063
<=> x2 + y2 + z2 \(\ge\)3031,5 > 2021 ( đpcm )
Ta có : \(\left(x-y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2-2xy+2xz-2yz=0\)
Mà \(x^2+y^2+z^2\ge0\) nên \(-2xy+2xz-2yz\le0\)
\(\Leftrightarrow-2\left(xy+yz-xz\right)\le0\)
\(\Rightarrow xy+yz-xz\ge0\)(đpcm)
Vì x-y+z=0 =>(x-y+z)2=0=>x2+y2+z2-2xy-2yz+2xz=0
=>x2+y2+z2=2xy+2yz-2xz mà x2+y2+z2\(\supseteq\)0
nên 2xy+2yz-2xz\(\supseteq\)0
=>xy+yz-xz\(\supseteq\)0