Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Chứng minh \(x^3+y^3+z^3=\left(x+y\right)^3-3xy.\left(x+y\right)+z^3\)
Biến đổi vế phải thì ta phải suy ra điều phải chứng minh
b, Ta có: \(a+b+c=0\)thì
\(a^3+b^3+c^3==\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab\left(-c\right)+c^3=3abc\)
( Vì \(a+b+c=0\)nên \(a+b=-c\))
Theo giả thuyết \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
Khi đó \(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)
\(=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}\)
\(=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)
\(=xyz.\frac{3}{xyz}=3\)
Ta có: \(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Leftrightarrow\left(x+y\right)^2=\left(-z\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2=z^2\)
\(\Leftrightarrow x^2+y^2-z^2=-2xy\)
Chứng minh tương tự ta có:
\(x^2+z^2-y^2=-2xz\)
\(y^2+z^2-x^2=-2yz\)
\(\frac{xy}{x^2+y^2-z^2}+\frac{xz}{x^2+z^2-y^2}+\frac{yz}{y^2+z^2-x^2}\)
\(=\frac{xy}{-2xy}+\frac{xz}{-2xz}+\frac{yz}{-2yz}\)
\(=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\)
\(=-\frac{3}{2}\)
Vậy giá trị biểu thức là \(-\frac{3}{2}\)
Cái đề thiếu x, y, z dương bạn nhé
Với mọi x, y, z > 0 ta luôn có
\(x^3+y^3\ge x^2y+xy^2\) (1)
\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
Tương tự \(y^3+z^3\ge y^2z+yz^2\) (2) và \(z^3+x^3\ge z^2x+zx^2\) (3)
Cộng (1), (2), (3) vế theo vế ta được \(x^2y+xy^2+y^2z+yz^2+z^2x+zx^2\le2\left(x^3+y^3+z^3\right)\)
Theo BĐT Cauchy-Schwarz, ta có
\(VT=\frac{x^6}{x^3+x^2y+xy^2}+\frac{y^6}{y^3+y^2z+yz^2}+\frac{z^6}{z^3+z^2x+zx^2}\)
\(\ge\frac{\left(x^3+y^3+z^3\right)^2}{\left(x^3+y^3+z^3\right)+\left(x^2y+xy^2+y^2z+yz^2+z^2x+zx^2\right)}\ge\frac{\left(x^3+y^3+z^3\right)^2}{\left(x^3+y^3+z^3\right)+2\left(x^3+y^3+z^3\right)}\)
\(=\frac{\left(x^3+y^3+z^3\right)^2}{3\left(x^3+y^3+z^3\right)}=\frac{x^3+y^3+z^3}{3}\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=z\)