Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
4x2--25=0
=> (2x)22 --52 =0
=> (2x-5)(2x+5)=0
\(\orbr{\begin{cases}2x-5=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}X=\frac{5}{2}\\X=\frac{-5\:\:. \:\:\:\:\:\:\:\:\:\:TT}{2}\end{cases}Mình\:}\)
\(4x^2=25\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\sqrt{\frac{25}{4}}\) \(=\frac{5}{2}\)
\(\left(x^3-x^2\right)^2-\left(4x^2-8x+4\right)=0\)
= \(\left(x^3-x^2\right)^2-\left(2x-2\right)^2=0\)
=(\(\left(x^3-x^2-2x+2\right)\left(x^3-x^2+2x-2\right)=0\)
=\(\left[x^2\left(x-1\right)-2\left(x-1\right)\right]\) \(\left[x^2\left(x-1\right)+2\left(x-1\right)\right]\)=0
=\(\left(x-1\right)\left(x^2-2\right)\left(x-1\right)\left(x^2+2\right)\) = 0
= \(\left(x-1\right)\left(x^2-2\right)\left(x^2+2\right)=0\)
=\(\left(x-1\right)\left(x^4-4\right)\) = 0
=> \(x-1=0\) hoặc \(x^4-4=0\)
=> \(x=1\) hoặc \(x=\pm\sqrt{2}\)
câu 2
a)\(\left(3x^2\right)^3-\left(2x\right)^3\)
= \(\left(3x^2-2x\right)\left(9x^4-54x^5+36x^4-4x^2\right)\)
= \(x\left(3x-2\right)\left(9x^4-54x^5+36x^4-4x^2\right)\)
may be wrong , but chawsc k nhiều , chỗ nào k hiểu ib hỏi mk sai nha <3
1a) 4x2 - 25 = 0 => 4x2 = 25 => x2 = \(\frac{25}{4}\)= \(\left(\frac{5}{2}\right)^2\)=> x = \(\frac{5}{2}\)
a) 2x3 + 8x2 - 8x
= 2x(x2 + 4x - 4)
= 2x(x2 + 4x + 4 - 8)
= 2x[(x + 2)2 - 8]
= \(2x\left(x+2-\sqrt{8}\right)\left(x+2+\sqrt{8}\right)\)
b) a2 - b2 + 4a + 4b
= (a - b)(a + b) + 4(a + b)
= (a + b)(a - b + 4)
c) x2 - 2x - 3
= x2 + x - 3x - 3
= x(x + 1) - 3(x + 1)
= (x + 1)(x - 3)
d) x2 - 4x - 3
= x2 - 4x + 4 - 7
= (x + 2)2 - 7
= \(\left(x+2-\sqrt{7}\right)\left(x+2+\sqrt{7}\right)\)
a) \(12x^3+8x^2-3x-2=4x^2\left(3x+2\right)-\left(3x+2\right)\)
\(=\left(3x+2\right)\left(4x^2-1\right)=\left(3x+2\right)\left(2x-1\right)\left(2x+1\right)\)
b) \(18x^3+27x^2-2x-3=9x^2\left(2x+3\right)-\left(2x+3\right)\)
\(=\left(2x+3\right)\left(9x^2-1\right)=\left(2x+3\right)\left(3x-1\right)\left(3x+1\right)\)
c) \(8x^3+4x^2-34x+15=4x^2\left(2x-3\right)+8x\left(2x-3\right)-5\left(2x-3\right)\)
\(=\left(2x-3\right)\left(4x^2+8x-5\right)=\left(2x-3\right)\left(2x-1\right)\left(2x+5\right)\)
Bài 1:tìm x ,biết:
a) (2x - 1)(3x + 2) - 6x(x + 1) = 0
\(\Leftrightarrow6x^2+x-2-6x^2-6x=0\)
\(\Leftrightarrow-5x=2\)
\(\Leftrightarrow x=\frac{-2}{5}\)
b) \(\left(4x-1\right)^2-\left(2x+1\right)\left(8x-3\right)=0\)
\(\Leftrightarrow16x^2-8x+1-16x^2-2x+3=0\)
\(\Leftrightarrow-10x=-4\)
\(\Leftrightarrow x=\frac{2}{5}\)
c) \(4x^2-1=2\left(2x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-2\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)
2a) \(4x^2-9y^2-6y-1=4x^2-\left(3y+1\right)^2\)
\(=\left(2x-3y-1\right)\left(2x+3y+1\right)\)
b) \(4x^2-1-2x\left(2x-1\right)=\left(2x-1\right)\left(2x+1\right)-2x\left(2x-1\right)\)
\(=1.\left(2x-1\right)\)
c) \(x^2-8x-4y^2+16=\left(x-4\right)^2-4y^2\)
\(=\left(x-4-2y\right)\left(x-4+2y\right)\)
d) \(9x^2-12x-y^2+4=\left(3x-2\right)^2-y^2\)
\(=\left(3x-2-y\right)\left(3x-2+y\right)\)
e) \(4x^2+10x-5=4x^2+2.2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-5\)
\(=\left(2x+\frac{5}{2}\right)^2-\frac{45}{4}\)
\(=\left(2x+\frac{5+3\sqrt{5}}{2}\right)\left(2x+\frac{5-3\sqrt{5}}{2}\right)\)
a) 1 - 2y + y2
= (1-y)2
b) ( x + 1 )2 - 25
=( x + 1 )2 - 52
=(x+1+5)(x+1-5)
a) 4x2-8x=0
(2x)2-2.2.2x+4-4=0
(2x-2)2 =4
2x-2=2
2x =4
x=2
Nhớ k cho mk nha
1,
a, \(\left(2x-5\right)\cdot\left(2x+5\right)=0\)
\(x=\frac{5}{2}\)
x\(=-\frac{5}{2}\)
b \(\left(x^3-x^2\right)^2-\left(2x-2\right)^2\)=0
(x-2x+2)(x+2x-2)=0
x=2
x=2/3
2,
a (3x^2)^3-(2x)^3
(3x^2-2x)(9x^4+6x^3+4x^2)
\(4x^2-25=0\)
\(\left(2x-5\right)\left(2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-5=0\\2x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{5}{2}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{5}{2}\end{cases}}\)
\(27x^6-8x^3=\left(3x^2\right)^3-\left(2x\right)^3=\left(3x^2-2x\right)\left[\left(3x^2\right)^2+3x^2.2x+\left(2x\right)^2\right]=x^3.\left(3x-2\right).\left(3x^2+6x+4\right)\)