Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:Tìm số nguyên x
a,x-2=-6+17
=> x-2= 11
=> x = 11 + 2
=> x = 13
b,x+2=-9
=> x = -9 - 2
=> x = -11
a) \(\left(2x-1\right)+\frac{3}{15}=\frac{3}{2}\)
\(\Rightarrow2x-1=\frac{3}{2}-\frac{3}{15}=\frac{13}{10}\)
\(\Rightarrow2x=\frac{13}{10}+1=\frac{23}{10}\)
\(\Rightarrow x=\frac{23}{20}\)
b) \(x+\frac{46}{15}=1,5\)
\(\Rightarrow x+\frac{46}{15}=\frac{3}{2}\)
\(\Rightarrow x=\frac{3}{2}-\frac{46}{15}\)
\(\Rightarrow x=\frac{-47}{30}\)
c) \(\left(-2x+1\right)+\frac{3}{15}=\frac{5}{3}\)
\(\Rightarrow-2x+1=\frac{5}{3}-\frac{3}{15}=\frac{22}{15}\)
\(\Rightarrow-2x=\frac{7}{15}\Rightarrow x=\frac{-7}{30}\)
a) \(\dfrac{2}{3}x-\dfrac{1}{2}=\dfrac{1}{10}\)
\(\dfrac{2}{3}x=\dfrac{1}{10}+\dfrac{1}{2}=\dfrac{3}{5}\)
\(x=\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{9}{10}\)
b) \(\dfrac{39}{7}:x=13\)
\(x=\dfrac{\dfrac{39}{7}}{13}=\dfrac{3}{7}\)
c) \(\left(\dfrac{14}{5}x-50\right):\dfrac{2}{3}=51\)
\(\dfrac{14}{5}x-50=51\cdot\dfrac{2}{3}=34\)
\(\dfrac{14}{5}x=34+50=84\)
\(x=\dfrac{84}{\dfrac{14}{5}}=30\)
d) \(\left(x+\dfrac{1}{2}\right)\left(\dfrac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\\dfrac{2}{3}-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
e) \(\dfrac{2}{3}x-\dfrac{1}{2}x=\dfrac{5}{12}\)
\(\dfrac{1}{6}x=\dfrac{5}{12}\)
\(x=\dfrac{5}{12}:\dfrac{1}{6}=\dfrac{5}{2}\)
g) \(\left(x\cdot\dfrac{44}{7}+\dfrac{3}{7}\right)\dfrac{11}{5}-\dfrac{3}{7}=-2\)
\(\left(x\cdot\dfrac{44}{7}+\dfrac{3}{7}\right)\cdot\dfrac{11}{5}=-2+\dfrac{3}{7}=-\dfrac{11}{7}\)
\(x\cdot\dfrac{44}{7}+\dfrac{3}{7}=-\dfrac{11}{7}:\dfrac{11}{5}=-\dfrac{5}{7}\)
\(\dfrac{44}{7}x=-\dfrac{5}{7}-\dfrac{3}{7}=-\dfrac{8}{7}\)
\(x=-\dfrac{8}{7}:\dfrac{44}{7}=-\dfrac{2}{11}\)
h) \(\dfrac{13}{4}x+\left(-\dfrac{7}{6}\right)x-\dfrac{5}{3}=\dfrac{5}{12}\)
\(\dfrac{25}{12}x-\dfrac{5}{3}=\dfrac{5}{12}\)
\(\dfrac{25}{12}x=\dfrac{5}{12}+\dfrac{5}{3}=\dfrac{25}{12}\)
\(x=1\)
Mỏi tay woa bn làm nốt nha!!
a: \(\dfrac{2}{3}x-\dfrac{1}{2}=\dfrac{1}{10}\)
nên \(\dfrac{2}{3}x=\dfrac{1}{10}+\dfrac{1}{2}=\dfrac{6}{10}=\dfrac{3}{5}\)
hay \(x=\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{9}{10}\)
b: \(\Leftrightarrow5-\dfrac{4}{7}x=13\)
nên 4/7x=-8
hay x=-12
c: \(\left(x+\dfrac{1}{2}\right)\cdot\left(\dfrac{2}{3}-2x\right)=0\)
=>x+1/2=0 hoặc 2/3-2x=0
=>x=-1/2 hoặc x=1/3
d: \(\dfrac{2}{3}x-\dfrac{1}{2}x=\dfrac{5}{12}\)
nên 1/6x=5/12
hay x=5/2
a; -2\(x\) - 3.(\(x-17\)) = 34 - 2.( - \(x\) + 25)
- 2\(x\) - 3\(x\) + 51 = 34 + 2\(x\) - 50
2\(x\) + 2\(x\) + 3\(x\) = - 34 + 50 + 51
7\(x\) = 67
\(x\) = 67 : 7
\(x\) = \(\dfrac{67}{7}\)
Vậy \(x\) = \(\dfrac{67}{7}\)
b; 17\(x\) + 3.(- 16\(x\) - 37) = 2\(x\) + 43 - 4\(x\)
17\(x\) - 48\(x\) - 111 = 2\(x\) - 4\(x\) + 43
- 31\(x\) - 2\(x\) + 4\(x\) = 111 + 43
- \(x\) x (31 + 2 - 4) = 154
- \(x\) x (33 - 4) = 154
- \(x\) x 29 = 154
- \(x\) = 154 : (-29)
\(x\) = - \(\dfrac{154}{29}\)
Vậy \(x=-\dfrac{154}{29}\)
a: \(\Leftrightarrow2x-2+4x+8=-12\)
=>6x+6=-12
=>6x=-18
hay x=-3
b: \(\Leftrightarrow-10x-15-12+9x=13\)
=>-x-27=13
=>-x=40
hay x=-40
c: \(\Leftrightarrow-10x+70+20-5x=-15\)
\(\Leftrightarrow-15x=-105\)
hay x=7
d: \(\Leftrightarrow8x-12-7x+14=10\)
=>x+2=10
hay x=8
e: \(\Leftrightarrow-12x-18+14x+2=2\)
=>2x-16=2
hay x=9
a) x-2∈ Ư(3x-13)= 3x-13⋮x-2
=3x-6-7⋮x-2=(x-2)(x-2)(x-2)-7⋮x-2
=> x-2∈Ư(-7)={7;1;-7;-1}
Nếu
x-2=7 => x=7+2=> x=9
x-2=1=>x=1+2=>x=3
x-2=-7=>x=(-7)+2=>x=-5
x-2=-1=>x=(-1)+2=>x=1
Vậy x ∈ {9;3;-5;1}
b) \(-15\left(x-2\right)+7\left(3-x\right)=7\)
\(\Leftrightarrow-15x+30+21-7x=7\\ \Leftrightarrow-22x+51=7\\ \Leftrightarrow-22x=7-51\\ \Leftrightarrow-22x=-44\\ \Leftrightarrow x=2\)
Vậy ...
c) \(\left(2x+1\right)^2=6\)
\(\Leftrightarrow4x^2+4x+1=6\\ \Leftrightarrow4x^2+4x+1-6=0\\ \Leftrightarrow4x^2+4x-5=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\sqrt{6}+1}{2}\\x=\dfrac{\sqrt{6}-1}{2}\end{matrix}\right.\)
Vậy ...
d) \(4\left(5-x\right)-3\left(1-x\right)=3^2\)
\(\Leftrightarrow20-4x-3+3x=9\\ \Leftrightarrow17-x=9\\ \Leftrightarrow-x=9-17\\ \Leftrightarrow-x=-8\\ \Leftrightarrow x=8\)
Vậy ...