Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; \(\dfrac{2}{3}\)\(x\) - \(\dfrac{3}{2}\)\(x\) = \(\dfrac{5}{12}\)
(\(\dfrac{2}{3}\) - \(\dfrac{3}{2}\))\(x\) = \(\dfrac{5}{12}\)
- \(\dfrac{5}{6}\)\(x\) = \(\dfrac{5}{12}\)
\(x\) = \(\dfrac{5}{12}\) : (- \(\dfrac{5}{6}\))
\(x=\) - \(\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\)
b; \(\dfrac{2}{5}\) + \(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\) - \(\dfrac{2}{5}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = - \(\dfrac{57}{10}\)
3\(x\) - 3,7 = - \(\dfrac{57}{10}\) : \(\dfrac{3}{5}\)
3\(x\) - 3,7 = - \(\dfrac{19}{2}\)
3\(x\) = - \(\dfrac{19}{2}\) + 3,7
3\(x\) = - \(\dfrac{29}{5}\)
\(x\) = - \(\dfrac{29}{5}\) : 3
\(x\) = - \(\dfrac{29}{15}\)
Vậy \(x\) \(\in\) - \(\dfrac{29}{15}\)
a) ta có (x+3) : x+1 <=> x+1+2 : x+1
Vì x+1 chia hết cho x+1 => 2 chia hết cho x+1
=> x+1 \(\inƯ\left(2\right)=\left\{-1;1;-2;2\right\}\)
x+1 | -1 | 1 | -2 | 2 |
x | -2 | 0 | -3 | 1 |
KL: để x+3 : x+1 thì x\(\in\){ -3;-2;0;1}
a. x=0
b.x=1,7
c.x=5,3
G.X=7
h.x=6
Mk làm vậy thôi
hok tốt
Professor minhmama
a;\(x\left(x+0\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+0=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=0\end{cases}}}\)
\(b,\left(x-1\right)\left(7-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\7-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}}\)
\(c,\left(-x+5\right)\left(3-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
\(d,\left(x+5\right)+\left(x-9\right)=13\)
\(\Rightarrow x+5+x-9=13\)
\(\Rightarrow2x=17\)
\(\Rightarrow x=\frac{17}{2}\)
\(e;\left(4+x\right)+\left(x-7\right)=x+2\)
\(\Rightarrow4+x+x-7=x+2\)
\(\Rightarrow x=5\)
\(f,\left(3x+5\right)-\left(2x-7\right)=4-x\)
\(\Rightarrow3x+5-2x+7=4-x\)
\(\Rightarrow2x=-8\Rightarrow x=-4\)
\(g,\left(x-1\right)^2=36\)
\(\Rightarrow\left(x-1\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=6\\x-1=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=5\end{cases}}}\)
\(h,\left(3-x\right)^3=-27\)
\(\Rightarrow\left(3-x\right)^3=\left(-3\right)^3\)
\(\Rightarrow3-x=-3\)
\(\Rightarrow x=6\)
\(a,[\left(8.x-12\right):4].3^3.3=3^6.6\)
\(\left(8x-12\right):4=54\)
\(8x-12=216\)
\(8x=228\)
\(x=28,5\)
\(b,41-2^{x+1}=9\)
\(2^{x+1}=41-9\)
\(2^{x+1}=32\)
\(2^{x+1}=2^5\)
\(\Rightarrow x+1=5\)
\(\Rightarrow x=4\)
\(+4x\ge6\Rightarrow|4x-6|=4x-6=|2x-4|\)
Xét tiếp:
\(+2x\ge4\Rightarrow|2x-4|=2x-4\Rightarrow4x-6-2x+4\Rightarrow2x-2=0\Rightarrow x=1\)
\(+2x\le4\Rightarrow|2x-4|=4-2x\Rightarrow4x-6=4-2x\Rightarrow4x-6-4+2x=0\Rightarrow6x-10=0\)
\(\Rightarrow x=\frac{10}{6}\)
Vậy: x=1 trong cả 2TH chỉ có 1 TH thỏa mãn
\(+4x\le6\Rightarrow|4x-6|=6-4x\)
Ta xét tiếp 2 TH sau:
\(+2x\ge4\Rightarrow|2x-4|=2x-4\Rightarrow6-4x-2x+4=0\Rightarrow10-6x=0\Rightarrow x=\frac{10}{6}\)
Bạn tự xét típ
\(|x+2|< 6\Rightarrow-6< x+2< 6\Rightarrow x+2\in\left\{+-1;+-2;+-3;+-4;+-5;0\right\}\)
Từ đó suy ra x thôi nha