K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

BÀI 1: 

\(a,x^2-2x-1\)

\(=x^2-2x+1-2\)

\(=\left(x-1\right)^2-2\)

Vì: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2-2\ge-2\forall x\)

Dấu = xảy ra khi : \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy: GTNN của bt là -2 tại x=1

\(b,4x^2+4x-5\)

\(=4x^2+4x+1-6\)

\(=\left(2x+1\right)^2-6\)

Vì: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x+1\right)^2-6\ge-6\forall x\)

Dấu = xảy ra khi \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)

VậyGTNN của bt là -6 tại x=-1/2

BÀI 2:

\(a,2x-x^2-4\)

\(=-x^2+2x-4\)

\(=-x^2+2x-1-3\)

\(=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\)

Vì: \(-\left(x-1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)

Dấu = xảy ra khi : \(-\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy GTLN của bt là -3 tại x=1

b,mk chưa nghĩ ra,lúc nào mk nghĩ ra sẽ gửi lời giải cho bn

7 tháng 7 2018

1)

a) Đặt \(A=x^2-2x+1\) 

\(\Rightarrow A=x^2-2x-1=\left(x^2-2.x.1+1^2\right)-2=\left(x-1\right)^2-2\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2-2\ge2\forall x\)

\(A=2\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy \(A_{min}=2\Leftrightarrow x=1\)

Câu b tương tự

2)

a) Đặt \(B=2x-x^2-4\)

 \(B=2x-x^2-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)

\(B=-3\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy\(B_{max}=-3\Leftrightarrow x=1\)

b) Đặt \(C=-x^2-4\)

Ta có: \(x^2\ge0\forall x\Rightarrow-x^2\ge0\forall x\Rightarrow-x^2-4\le-4\forall x\)

\(C=-4\Leftrightarrow-x^2=0\Leftrightarrow x=0\)

Vậy \(C_{max}=-4\Leftrightarrow x=0\)

27 tháng 7 2016

Phân tích thành nhân tử hay tìm GTLN vậy bạnleuleu

28 tháng 7 2016

Tìm GTLN

12 tháng 7 2018

Tìm GTNN của biểu thức :

\(x^2+2x+4\)

Đặt A = \(x^2+2x+4\)

\(\Leftrightarrow A=\left(x^2+2.x.1+1\right)+3\)

\(\Leftrightarrow A=\left(x+1\right)^2+3\)

Ta luôn có : \(\left(x+1\right)^2\ge0\forall x\)

Suy ra : \(\left(x+1\right)^2+3\ge3\forall x\)

Hay A\(\ge3\) với mọi x

Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)

Nên : \(A_{min}=3khix=-1\)

16 tháng 9 2017

giúp mk vs nha , mk đăng cần rất gấp

16 tháng 9 2017

mình hk bít vít

8 tháng 9 2019

Tớ làm đc 1b và 2ab thôi hehe