Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x-1}{12}=\frac{3}{x-1}\)
\(\Rightarrow\left(x-1\right).\left(x-1\right)=12.3\)
\(\Rightarrow\left(x-1\right)^2=36\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^2=6^2\\\left(x-1\right)^2=\left(-6\right)^2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-1=6\\x-1=-6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-5\end{cases}}\)
Vậy \(x=7;x=-5\)
\(\frac{x-1}{12}=\frac{3}{x-1}ĐKXĐ\left(x\ne1\right)\)
\(\left(x-1\right)^2=36\)
\(\left(x-1\right)^2=6^2\)
\(\Rightarrow\orbr{\begin{cases}x-1=6\\x-1=-6\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=-5\end{cases}}}\)tm ))
Đặt A=\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}\)
Ta có:\(\frac{1}{4^2}< \frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{5^2}< \frac{1}{4\cdot5}=\frac{1}{4}-\frac{1}{5}\)
.............................
\(\frac{1}{2011^2}< \frac{1}{2010\cdot2011}=\frac{1}{2010}-\frac{1}{2011}\)
\(\Rightarrow A< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\cdot\cdot\cdot+\frac{1}{2010}-\frac{1}{2011}\)
\(=\frac{1}{3}-\frac{1}{2011}< \frac{1}{3}\)
Vậy A<\(\frac{1}{3}\)hay \(\frac{1}{4^2}+\frac{1}{5^2}+\cdot\cdot\cdot+\frac{1}{2011^2}< \frac{1}{3}\)
\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< \frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)
Gọi \(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)là \(S\)
Ta có:
\(S=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(=\frac{1}{3}-\frac{1}{2011}< \frac{1}{3}\)
Vì \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< S\)mà \(S< \frac{1}{3}\)\(\Rightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< \frac{1}{3}\)
a) \(\frac{1}{x}+\frac{y}{6}=\frac{1}{2}\)
\(\frac{1}{x}=\frac{1}{2}-\frac{y}{6}\)
\(\frac{1}{x}=\frac{3}{6}-\frac{y}{6}\)
\(\frac{1}{x}=\frac{3-y}{6}\)
\(\Rightarrow6=x.\left(3-y\right)\)
Lập bảng ta có :
3-y | 2 | 3 | -2 | -3 | 1 | 6 | -1 | -6 |
x | 3 | 2 | -3 | -2 | 6 | 1 | -6 | -1 |
y | 1 | 0 | 5 | 6 | 2 | -3 | 4 | 9 |
Vậy ...
b) tương tự câu a
c) \(\frac{x-1}{9}+\frac{1}{3}=\frac{1}{y+2}\)
\(\frac{x-1}{9}+\frac{3}{9}=\frac{1}{y+2}\)
\(\frac{x+2}{9}=\frac{1}{y+2}\)
\(\Rightarrow\left(x+2\right).\left(y+2\right)=9\)
x+2 | 3 | -3 | 1 | 9 | -1 | -9 |
y+2 | 3 | -3 | 9 | 1 | -9 | -1 |
x | 1 | -5 | -1 | 7 | -3 | -11 |
y | 1 | -5 | 7 | -1 | -11 | -3 |
Vậy ...
d) \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
\(\frac{4}{y}=\frac{x}{3}-\frac{1}{5}\)
\(\frac{4}{y}=\frac{5x}{15}-\frac{3}{15}\)
\(\frac{4}{y}=\frac{5x-3}{15}\)
\(\Rightarrow4.15=y.\left(5x-3\right)\)
\(\Rightarrow60=y.\left(5x-3\right)\)
Lập bảng ta có :
nhiều tự làm
đặt 6 ra ngoài
ta có \(\frac{1}{2}.6.\left(1+\frac{1}{4}+\frac{1}{10}+..............+\frac{1}{1540}\right)\)
=3 \(.\left(1+\frac{1}{1540}\right)\)
=3 \(.\frac{1541}{1540}\)
=3
=>3 > \(\frac{57}{462}\)
=> tích lớn hơn
1 ) Ta có :
b - a = 1 => b và a là hai số nguyên liên tiếp
MÀ hai số nguyên liên tiếp có tích bằng 72 chỉ có thể là : 8 và 9 ; ( - 8 ) và ( - 9 )
Ta thử các giá trị a , b ra ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )
Vậy ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )
2 ) \(\frac{1}{2.y}\)= \(\frac{x}{3}-\frac{1}{6}\)
\(\frac{1}{2y}\)= \(\frac{2x-1}{6}\)
=> ( 2x - 1 ) 2y = 6 mà x,y thuộc Z
=> 2x - 1 , 2y thuộc Ư ( 6 ) = { - 6 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ; 3 ; 6 }
Lập bảng giá trị tương ứng giá trị của x , y :
2x - 1 | - 6 | - 3 | - 2 | - 1 | 1 | 2 | 3 | 6 |
x | / | - 1 | / | 0 | 1 | / | 2 | / |
2y | - 1 | - 2 | - 3 | - 6 | 6 | 3 | 2 | 1 |
y | / | - 1 | / | - 3 | 3 | / | 1 | / |
Đề là gì vậy bạn ?