K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2020

Ta có : \(\frac{x-1}{12}=\frac{3}{x-1}\)

\(\Rightarrow\left(x-1\right).\left(x-1\right)=12.3\)

\(\Rightarrow\left(x-1\right)^2=36\)

\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^2=6^2\\\left(x-1\right)^2=\left(-6\right)^2\end{cases}}\) 

\(\Rightarrow\orbr{\begin{cases}x-1=6\\x-1=-6\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=7\\x=-5\end{cases}}\)

Vậy \(x=7;x=-5\) 

\(\frac{x-1}{12}=\frac{3}{x-1}ĐKXĐ\left(x\ne1\right)\)

\(\left(x-1\right)^2=36\)

\(\left(x-1\right)^2=6^2\)

\(\Rightarrow\orbr{\begin{cases}x-1=6\\x-1=-6\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=-5\end{cases}}}\)tm ))

26 tháng 4 2017

Đặt A=\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}\)

Ta có:\(\frac{1}{4^2}< \frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4}\)

         \(\frac{1}{5^2}< \frac{1}{4\cdot5}=\frac{1}{4}-\frac{1}{5}\)

               .............................

          \(\frac{1}{2011^2}< \frac{1}{2010\cdot2011}=\frac{1}{2010}-\frac{1}{2011}\)

\(\Rightarrow A< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\cdot\cdot\cdot+\frac{1}{2010}-\frac{1}{2011}\)

         \(=\frac{1}{3}-\frac{1}{2011}< \frac{1}{3}\)

Vậy A<\(\frac{1}{3}\)hay \(\frac{1}{4^2}+\frac{1}{5^2}+\cdot\cdot\cdot+\frac{1}{2011^2}< \frac{1}{3}\)

26 tháng 4 2017

\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< \frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)

Gọi \(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)là \(S\)

Ta có:

\(S=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)

\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(=\frac{1}{3}-\frac{1}{2011}< \frac{1}{3}\)

Vì \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< S\)mà \(S< \frac{1}{3}\)\(\Rightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< \frac{1}{3}\)

14 tháng 6 2017

a) \(\frac{1}{x}+\frac{y}{6}=\frac{1}{2}\)

\(\frac{1}{x}=\frac{1}{2}-\frac{y}{6}\)

\(\frac{1}{x}=\frac{3}{6}-\frac{y}{6}\)

\(\frac{1}{x}=\frac{3-y}{6}\)

\(\Rightarrow6=x.\left(3-y\right)\)

Lập bảng ta có :

3-y23-2-316-1-6
x32-3-261-6-1
y10562-349

Vậy ...

b) tương tự câu a

c) \(\frac{x-1}{9}+\frac{1}{3}=\frac{1}{y+2}\)

\(\frac{x-1}{9}+\frac{3}{9}=\frac{1}{y+2}\)

\(\frac{x+2}{9}=\frac{1}{y+2}\)

\(\Rightarrow\left(x+2\right).\left(y+2\right)=9\)

x+23-319-1-9
y+23-391-9-1
x1-5-17-3-11
y1-57-1-11-3

Vậy ...

d) \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)

\(\frac{4}{y}=\frac{x}{3}-\frac{1}{5}\)

\(\frac{4}{y}=\frac{5x}{15}-\frac{3}{15}\)

\(\frac{4}{y}=\frac{5x-3}{15}\)

\(\Rightarrow4.15=y.\left(5x-3\right)\)

\(\Rightarrow60=y.\left(5x-3\right)\)

Lập bảng ta có :

nhiều tự làm

16 tháng 7 2015

đặt 6 ra ngoài 

ta có \(\frac{1}{2}.6.\left(1+\frac{1}{4}+\frac{1}{10}+..............+\frac{1}{1540}\right)\)

=3 \(.\left(1+\frac{1}{1540}\right)\)

=3 \(.\frac{1541}{1540}\)

=3

=>3 > \(\frac{57}{462}\)

=> tích lớn hơn 

10 tháng 4 2016

Là đặt \(\frac{1}{6}\) ra ngoài chứ bạn

25 tháng 3 2018

1 ) Ta có :

b - a = 1 => b và a là hai số nguyên liên tiếp

MÀ hai số nguyên liên tiếp có tích bằng 72 chỉ có thể là : 8 và 9 ; ( -  8 ) và ( - 9 )

Ta thử các giá trị a , b ra ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )

Vậy ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )

25 tháng 3 2018

2 ) \(\frac{1}{2.y}\)\(\frac{x}{3}-\frac{1}{6}\)

\(\frac{1}{2y}\)\(\frac{2x-1}{6}\)

=> ( 2x - 1 ) 2y = 6 mà x,y thuộc Z 

=> 2x - 1 , 2y thuộc Ư ( 6 ) = { - 6 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ; 3 ; 6 }

Lập bảng giá trị tương ứng giá trị của x , y :

2x - 1- 6- 3- 2- 11236
x /- 1 /01 /2 /
2y- 1- 2- 3- 66321
y /- 1 /- 33 /1 /