K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2015

abcd là số có 4 chữ số =>abcd-d=abc0=10.abc Mà abcd-d=1(vô lí)

chỉ cần 1 cái sai là cả bài sai hết nên bạn chỉ cần chứng minh như vậy và kết luận

 

4 tháng 1 2020

có 4 chữ số thì phải có gạch trên đầu chứ bạn

1a) 5x - 5y + 3x (x - y)

= (5x - 5y) + 3x (x - y)

= 5 (x - y) + 3x (x - y)

= (5 + 3x) (x - y)

b) x2 + 2xy + y2 - 4

= (x2 + 2xy + y2) - 22

= (x + y)2 - 22

= [(x + y) + 2] [(x + y) - 2]

= (x + y + 2) (x + y - 2)

#Học tốt!!!

~NTTH~
 

6 tháng 11 2016

1. C. \(16x^2\left(x-y\right)\)\(-10y\left(y-1\right)\)\(=-2\left(y-x\right)\)\(\left(8x^2+5y\right)\)

2. C. \(\left(x-y\right)\left(x-y-3\right)\)

3. D. \(\left(x-2\right)\left(x+1\right)\)

4. C. \(y\left(x-2\right)\)\(5x\left(x-3\right)\)

5. D. \(3\left(x-2y\right)\)

6 tháng 11 2016

1. Trong các kết quả sau kết quả nào sai

A. -17x^3y-34x^2y^2+51xy^3=17xy(x^2+2xy-3y^2)

B. x(y-1) +3(y-1)= -(1-y)(x+3)

C. 16x^2(x-y)-10y(y-1)=-2(y-x)(8x^2+5y)

2. Đa thức (x-y)^2+3(y-x) được phân tích thành nhân tử là:

A. (x+y)(x-y+3)

B. (x-y)(2x-2y+3)

C. (x-y)(x-y-3)

D. Cả 3 câu đều sai

3. Kết quả phân tích đa thức x(x-2)+(x-2) thành nhân tử

A. (x-2)x

B. (x-2)^2.x

C. x(2x-4)

D. (x-2)(x+1)

4. Kết quả phân tích 5x^2(xy-2y)-15x(xy-2y) thành nhân tử

A. (xy-2y)(5x^2-15x^2)

B. y(x-2)(5x^2-15x^2)

C. y(x-2)5x(x-3)

D. (xy-2y)5x(x-3)

5. Kết quả phân tích đa thức 3x-6y thành nhân tử là

A. 3(x-6y)

B. 3(3x-y)

C. 3(3x-2y)

D. 3(x-2y)

16 tháng 12 2016

a, x3-9x

=x(x-3)(x+3)

b, x2-3x+xy-3y

=x(x-3)+y(x-3)

=(x-3)(x+y)

16 tháng 12 2016

a) \(=x.\left(x^2-9\right)\)

b) \(=x.\left(x-3\right)+y.\left(x-3\right)=\left(x+y\right).\left(x-3\right)\)

Góc D=360 độ-30độ-80độ= 250độ. k mik nhé

22 tháng 6 2019

Ta có \(a^2+b^2+c^2\ge ab+bc+ac\)

Áp dụng 

=> \(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\ge a^2bc+ab^2c+abc^2=abc\left(a+b+c\right)\)

=> \(\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c+d\right)}\)

Khi đó 

\(VT\le\frac{1}{a+b+c+d}\left(\frac{1}{abc}+\frac{1}{bcd}+\frac{1}{cda}+\frac{1}{dab}\right)\)

=> \(VT\le\frac{1}{a+b+c+d}.\frac{a+b+c+d}{abcd}=1\)

Dấu bằng xảy ra khi \(a=b=c=d=1\)

Vậy MaxA=1 khi a=b=c=d=1

23 tháng 6 2019

a;b;c la so thuc thi chua chac a;b;c > 0 dau

30 tháng 4 2019

Đường link : Câu hỏi của Hà Lê - Toán lớp 9 - Học toán với OnlineMath

30 tháng 4 2019

Ta có : a4 + b4 \(\ge\)2a2b2 ; b4 + c4 \(\ge\)2b2c2 ; a4 + c4 \(\ge\)2a2c2

\(\Rightarrow\)a4 + b4 + c4 \(\ge\)a2b2 + b2c2 + a2c2 ( 1 )

Lại có : a2b2 + b2c2 \(\ge\)2b2ac ; b2c2 + a2c2 \(\ge\)2c2ab ; a2b2 + a2c2 \(\ge\)2a2bc

\(\Rightarrow\)a2b2 + b2c2 + a2c2 \(\ge\)abc ( a + b + c ) ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)a4 + b4 + c4 \(\ge\) abc ( a + b + c ) 

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

Tương tự , b4 + c4 + d4 ​​​\(\ge\)​bcd ( b + c + d ) ; a4 + b4 + d4 ​\(\ge\)​abd ( a + b + d ) ; c4 + d4 + a4 ​\(\ge\)​acd ( a + c + d ) 

\(\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c\right)+abcd}=\frac{abcd}{abc\left(a+b+c+d\right)}=\frac{d}{a+b+c+d}\)

\(\frac{1}{b^4+c^4+d^4+abcd}\le\frac{a}{a+b+c+d}\)\(\frac{1}{a^4+b^4+d^4+abcd}\le\frac{c}{a+b+c+d}\)

\(\frac{1}{c^4+d^4+a^4+abcd}\le\frac{b}{a+b+c+d}\)

Cộng từng vế theo vế , ta được : 

\(\le\)1  ( đặt A = biểu thức ấy nhé )

Vậy GTLN A = 1 \(\Leftrightarrow\)a = b = c = d = 1

17 tháng 7 2018

\(-5^my+15x^ny\)

\(=5y\left(3x^n-5^{m-1}\right)\)

Tham khảo~

17 tháng 7 2018

Xét 2 trường hợp : 

Trường hợp 1 :

\(m\ge n\)

\(\Rightarrow-5^my+15x^my\)

\(=-5x^n.x^{m-n}y+15x^ny\)

\(=-5x^ny\left(x^{m-n}-3\right)\)

Trường hợp 2 :

\(m< n\)

\(\Rightarrow-5^my+15x^ny\)

\(=-5x^my+15x^m.x^{n-m}y\)

\(=-5x^my\left(1-3x^{n-m}\right)\)