Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(pt\Leftrightarrow x^3-\sqrt{2}.x^2-2\sqrt{2}.x^2+4x-x+\sqrt{2}=0\)
\(\Leftrightarrow x^2\left(x-\sqrt{2}\right)-2\sqrt{2}x\left(x-\sqrt{2}\right)-\left(x-\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x^2-2\sqrt{2}x-1\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x^2-2\sqrt{2}x+2-3\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)[\left(x-\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2]=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x-\sqrt{2}-\sqrt{3}\right)\left(x-\sqrt{2}+\sqrt{3}\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=\sqrt{2}\\x=\sqrt{2}+\sqrt{3}\\x=\sqrt{2}-\sqrt{3}\end{cases}}\)
a/ \(\Delta=\left(3\sqrt{3}\right)^2-4.4\left(-6\right)=123\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3\sqrt{3}+\sqrt{123}}{8}\\x_2=\frac{3\sqrt{3}-\sqrt{123}}{8}\end{matrix}\right.\)
b/ \(\Delta=9-4\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)=25\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3+\sqrt{25}}{2\left(1-\sqrt{5}\right)}=-1-\sqrt{5}\\x_2=\frac{3-\sqrt{25}}{2\left(1-\sqrt{5}\right)}=\frac{1+\sqrt{5}}{4}\end{matrix}\right.\)
\(a)4x^2-3\sqrt{3}x-6=0\)
Có: \(a=4;b=-3\sqrt{3};c=-6\)
\(\Delta=b^2-4ac\\ =\left(-3\sqrt{3}\right)^2-4.4.\left(-6\right)\\ =123>0\)
Phương trình có 2 nghiệm phân biệt:
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-3\sqrt{3}\right)+\sqrt{123}}{2.4}=\frac{3\sqrt{3}+\sqrt{123}}{8}\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-3\sqrt{3}\right)-\sqrt{123}}{2.4}=\frac{3-\sqrt{123}}{8}\)
\(b)\left(1-\sqrt{5}\right)x^2-3x+\sqrt{5}+1=0\)
Có: \(a=1-\sqrt{5};b=-3;c=\sqrt{5}+1\)
\(\Delta=b^2-4ac\\ =\left(-3\right)^2-4.\left(1-\sqrt{5}\right)\left(\sqrt{5}+1\right)\\ =25>0\)
Phương trình có 2 nghiệm phân biệt:
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-3\right)+\sqrt{25}}{2\left(1-\sqrt{5}\right)}=-1-\sqrt{5}\\ x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-3\right)-\sqrt{25}}{2\left(1-\sqrt{5}\right)}=\frac{1+\sqrt{5}}{4}\)
\(A=3\sqrt{8}-\sqrt{50}-\sqrt{\sqrt{2}-1}\)
\(\Leftrightarrow6\sqrt{2}-5\sqrt{2}-\sqrt{\sqrt{2}-1}\)
\(\Leftrightarrow\sqrt{2}-\sqrt{\sqrt{2}-1}\)
\(B=2.\dfrac{2}{x-1}.\sqrt{\dfrac{x^2-2x+1}{4x^2}}\)
\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{x^2-2x+1}}{2x}\)
\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{\left(x-1\right)^2}}{x}\)
\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{x-1}{x}\)
\(\Leftrightarrow\)\(2.\dfrac{1}{x}\)
\(\Leftrightarrow\)\(\dfrac{2}{x}\)
Liên hợp:v
a) ĐK: \(x\ge-2\)
PT<=> \(\sqrt{x+5}-2+\sqrt{x+2}-1+2\left(x+1\right)=0\)
\(\Leftrightarrow\frac{x+1}{\sqrt{x+5}+2}+\frac{x+1}{\sqrt{x+2}+1}+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{x+5}+2}+\frac{1}{\sqrt{x+2}+1}+2\right)=0\)
Cái ngoặc to nhìn sơ qua cũng thấy nó >0 :v
Do đó x = -1
Vậy...
P/s: cô @Akai Haruma check giúp em ạ!
Nguyễn Việt Lâm, svtkvtm, Trần Thanh Phương, Phạm Hoàng Hải Anh, DƯƠNG PHAN KHÁNH DƯƠNG, @Akai Haruma
Lời giải:
ĐKXĐ: $x\geq -1$
Đặt $\sqrt{x+1}=a(a\geq 0)$ thì PT trở thành:
$x^3-3x(x+1)+2\sqrt{(x+1)^3}=0$
$\Leftrightarrow x^3-3xa^2+2a^3=0$
$\Leftrightarrow (x^3-xa^2)-(2xa^2-2a^3)=0$
$\Leftrightarrow x(x-a)(x+a)-2a^2(x-a)=0$
$\Leftrightarrow (x-a)(x^2+ax-2a^2)=0$
$\Leftrightarrow (x-a)[(x+a)(x-a)+a(x-a)]=0$
$\Leftrightarrow (x-a)^2(x+2a)=0$
Nếu $x-a=0$
$\Rightarrow x^2=a^2\Leftrightarrow x^2=x+1$
$\Rightarrow x=\frac{1\pm \sqrt{5}}{2}$. Vì $x=a\geq 0$ nên $x=\frac{1+\sqrt{5}}{2}$
Nếu $x+2a=0$
$\Rightarrow x^2=4a^2\Leftrightarrow x^2=4(x+1)$
$\Rightarrow x=2\pm 2\sqrt{2}$. Mà $x=-2a\leq 0$ nên $x=2-2\sqrt{2}$
Vậy..........
ĐKXĐ: ...
\(\Leftrightarrow x^3-3x\left(x+1\right)+2\sqrt{\left(x+1\right)^3}=0\)
Đặt \(\left\{{}\begin{matrix}x=a\\\sqrt{x+1}=b\end{matrix}\right.\)
\(\Rightarrow a^3-3ab^2+2b^3=0\)
\(\Leftrightarrow\left(a+2b\right)\left(a-b\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}2b=-a\\a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+1}=-x\left(x\le0\right)\\x=\sqrt{x+1}\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-4=0\\x^2-x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2-2\sqrt{2}\\x=\frac{1+\sqrt{5}}{2}\end{matrix}\right.\)
\(3x^2+\sqrt{2}x-3+\sqrt{2}=0\)
Ta có \(a-b+c=3-\sqrt{2}-3+\sqrt{2}=0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=-1\)
\(x_2=-\dfrac{-3+\sqrt{2}}{3}=\dfrac{3-\sqrt{2}}{3}\)