Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Delta=\left(3\sqrt{3}\right)^2-4.4\left(-6\right)=123\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3\sqrt{3}+\sqrt{123}}{8}\\x_2=\frac{3\sqrt{3}-\sqrt{123}}{8}\end{matrix}\right.\)
b/ \(\Delta=9-4\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)=25\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3+\sqrt{25}}{2\left(1-\sqrt{5}\right)}=-1-\sqrt{5}\\x_2=\frac{3-\sqrt{25}}{2\left(1-\sqrt{5}\right)}=\frac{1+\sqrt{5}}{4}\end{matrix}\right.\)
\(a)4x^2-3\sqrt{3}x-6=0\)
Có: \(a=4;b=-3\sqrt{3};c=-6\)
\(\Delta=b^2-4ac\\ =\left(-3\sqrt{3}\right)^2-4.4.\left(-6\right)\\ =123>0\)
Phương trình có 2 nghiệm phân biệt:
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-3\sqrt{3}\right)+\sqrt{123}}{2.4}=\frac{3\sqrt{3}+\sqrt{123}}{8}\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-3\sqrt{3}\right)-\sqrt{123}}{2.4}=\frac{3-\sqrt{123}}{8}\)
\(b)\left(1-\sqrt{5}\right)x^2-3x+\sqrt{5}+1=0\)
Có: \(a=1-\sqrt{5};b=-3;c=\sqrt{5}+1\)
\(\Delta=b^2-4ac\\ =\left(-3\right)^2-4.\left(1-\sqrt{5}\right)\left(\sqrt{5}+1\right)\\ =25>0\)
Phương trình có 2 nghiệm phân biệt:
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-3\right)+\sqrt{25}}{2\left(1-\sqrt{5}\right)}=-1-\sqrt{5}\\ x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-3\right)-\sqrt{25}}{2\left(1-\sqrt{5}\right)}=\frac{1+\sqrt{5}}{4}\)
Bài 1: Giải phương trình
a) ĐKXĐ: \(x\ge3\)
Ta có: \(\sqrt{100\cdot\left(x-3\right)}=\sqrt{20}\)
\(\Leftrightarrow\left|100\cdot\left(x-3\right)\right|=\left|20\right|\)
\(\Leftrightarrow100\cdot\left|x-3\right|=20\)
\(\Leftrightarrow\left|x-3\right|=\frac{1}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=\frac{1}{5}\\x-3=-\frac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{16}{5}\left(nhận\right)\\x=\frac{14}{5}\left(loại\right)\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{16}{5}\right\}\)
b) Ta có: \(\sqrt{\left(x-3\right)^2}=7\)
\(\Leftrightarrow\left|x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=7\\x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\)
Vậy: S={10;-4}
c) Ta có: \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-7}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{5}{2};\frac{-7}{2}\right\}\)
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
5) \(ĐK:x\ge-\frac{3}{2}\)
\(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)
\(\Leftrightarrow\frac{x^3+4x}{2x+7}=\sqrt{2x+3}\Leftrightarrow\frac{x^3+4x}{2x+7}-3=\sqrt{2x+3}-3\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+3x+7\right)}{2x+7}=\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+3x+7}{2x+7}-\frac{2}{\sqrt{2x+3}+3}\right)=0\)
(không có nghiệm thực)
Vậy phương trình có 1 nghiệm duy nhất là 3
1) \(Pt\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\)( đk: \(x\le-3,x\ge0\)
Đặt \(t=\sqrt{x^2+3x},t\ge0\)
Pt trở thành: \(-t^2-3t+10=0\Leftrightarrow t=2\left(dot\ge0\right)\)
giải \(\sqrt{x^2+3x}=2\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)
bài 2
ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)
\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta có;
\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)
\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)
Dấu \(=\)xảy ra khi \(a=b=c=1\)
a/\(\dfrac{x^2}{\sqrt{5}}-\sqrt{20}=0\Leftrightarrow\dfrac{x^2}{\sqrt{5}}=\sqrt{20}\Leftrightarrow x^2=\sqrt{100}\Leftrightarrow x=\sqrt{10}\)
b/ \(\sqrt{\left(x-3\right)^2}-9=0\Leftrightarrow\left|x-3\right|=9\Leftrightarrow\left[{}\begin{matrix}x-3=9\\x-3=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-6\end{matrix}\right.\)
Vậy.......
c/ \(\sqrt{4x^2+4x+1}=6\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\Leftrightarrow\left|2x+1\right|=6\Leftrightarrow\left[{}\begin{matrix}2x-1=6\\2x-1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Vậy.......
a)
ĐKXĐ: \(x> \frac{-5}{7}\)
Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)
\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)
Vậy......
b) ĐKXĐ: \(x\geq 5\)
\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)
(hoàn toàn thỏa mãn)
Vậy..........
c) ĐK: \(x\in \mathbb{R}\)
Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)
\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)
Khi đó:
\(2x-x^2+\sqrt{6x^2-12x+7}=0\)
\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)
\(\Leftrightarrow 7-a^2+6a=0\)
\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)
\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\) vì \(a\geq 0\)
\(\Rightarrow 6x^2-12x+7=a^2=49\)
\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)
\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)
(đều thỏa mãn)
Vậy..........