K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

a/ ĐKXĐ: \(x>0;x\ne1\)
b/Ta có : P\(=\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right).\frac{x-1}{\sqrt{x}}\)
\(=\frac{1+\sqrt{x}-1+\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}.\frac{x-1}{\sqrt{x}}\)
\(=\frac{2\sqrt{x}}{1-x}.\frac{x-1}{\sqrt{x}}\)
\(=-2\)
Vậy P\(=-2\) khi \(x>0;x\ne1\)
Chúc bạn học tốt!

12 tháng 8 2021

a) ĐKXĐ: \(x\ge0;x\ne1\)

b) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{2}{\sqrt{x}+1}\left(x\ge0;x\ne1\right)\\ P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{x-\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{2}\\ P=\dfrac{-\sqrt{x}}{\sqrt{x}-1}\)

12 tháng 8 2021

Giúp mình với

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-1}{\sqrt{x}}\)

b: Thay \(x=3+2\sqrt{2}\) vào P, ta được:

\(P=\dfrac{2\sqrt{2}+2}{\sqrt{2}+1}=2\)

Sửa đề: \(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}+1}{x-1}\)

a: ĐKXĐ: x>=0; x<>1

b: \(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}+1}{x-1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2+\left(\sqrt{x}+1\right)^2-3\sqrt{x}-1}{x-1}\)

\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{x-1}\)

\(=\dfrac{2x-3\sqrt{x}+1}{x-1}=\dfrac{\left(\sqrt{x}-1\right)\cdot\left(2\sqrt{x}-1\right)}{x-1}\)

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

7 tháng 8 2023

a) ĐKXĐ: \(x\ge0,x\ne1\)

b) \(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{3\sqrt{x}+1}{\sqrt{x}-1}\)

\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{\sqrt{x}+1-3\sqrt{x}-1}{\sqrt{x}-1}\)

\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{-2\sqrt{x}}{\sqrt{x}-1}\)

\(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{x-2\sqrt{x}+1-2x-2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\dfrac{-x-4\sqrt{x}+1}{x-1}\)

14 tháng 10 2022

Bài 1: 

a: ĐKXĐ: x>0; x<>1

b: \(M=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\cdot\dfrac{x}{\sqrt{x}+1}=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{x}{\sqrt{x}+1}=\sqrt{x}\left(\sqrt{x}-1\right)\)

c: \(M=x-\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}>=-\dfrac{1}{4}\)

Dấu = xảy ra khi x=1/4

4 tháng 7 2021

a) \(x>0,x\ne1\)

b) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}.\left(\sqrt{x}-1\right)=\dfrac{x-1}{\sqrt{x}}\)

c) \(P< 0\Rightarrow\dfrac{x-1}{\sqrt{x}}< 0\) mà \(\sqrt{x}>0\Rightarrow x-1< 0\Rightarrow x< 1\Rightarrow0< x< 1\)

1) ĐKXĐ: \(x\notin\left\{0;1\right\}\)

2) Ta có: \(A=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\dfrac{x+\sqrt{x}+1-\left(x-\sqrt{x}+1\right)}{\sqrt{x}}:\dfrac{\sqrt{x}+1-3+\sqrt{x}}{\sqrt{x}+1}\)

\(=2\cdot\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

29 tháng 7 2017

a) điều kiện xát định \(x\ge0;x\ne1\)

b) \(\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x-1}{x+\sqrt{x}+1}\)

\(\Leftrightarrow\dfrac{\left(2\sqrt{x}+x\right)\left(\sqrt{x}-1\right)-\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}:\dfrac{x-1}{x+\sqrt{x}+1}\)

\(\Leftrightarrow\dfrac{2x-2\sqrt{x}+x\sqrt{x}-x-x\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)

\(\Leftrightarrow\dfrac{x-2\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}.\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}-1\right)^2}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}.\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow\dfrac{x+\sqrt{x}+1}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\Leftrightarrow\dfrac{x+\sqrt{x}+1}{x^2+x\sqrt{x}-\sqrt{x}-1}\)

24 tháng 11 2021

\(a,ĐK:x>0;x\ne9\\ b,A=\dfrac{\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\\ A=\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{2}{\sqrt{x}+3}\\ c,A>\dfrac{2}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+3}-\dfrac{2}{5}>0\\ \Leftrightarrow\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{5}>0\\ \Leftrightarrow\dfrac{2-\sqrt{x}}{5\left(\sqrt{x}+3\right)}>0\\ \Leftrightarrow2-\sqrt{x}>0\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}< 2\Leftrightarrow0< x< 4\)

9 tháng 12 2017

a) \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\) với \(x>0;x\ne1\)

\(\Rightarrow A=\dfrac{x}{\sqrt{x-1}}-\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

= \(\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\)

= \(\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)

= \(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\)

= \(\sqrt{x}-1\)

b) Với \(x>0;x\ne1\)

A=\(\sqrt{x}-1\)

Ta có : \(x=3+2\sqrt{2}\) ( Thỏa mãn ĐKXĐ )

Thay \(x=3+2\sqrt{2}\) vào biểu thức A ta có :

A=\(\sqrt{3+2\sqrt{2}}-1\)= \(\sqrt{2}+1-1\)=\(\sqrt{2}\)

9 tháng 12 2017

\(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

a ) Rút gọn :

\(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\)

\(\Rightarrow A=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\)

\(\Rightarrow A=\sqrt{x}-1\)

b ) \(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)

Thay x vào A, ta có :

\(\sqrt{\left(\sqrt{2}+1\right)^2}-1=\sqrt{2}+1-1=\sqrt{2}\)

Vậy ...............