K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2016

2B=2x^2+2y^2+2xy-6x-6y+2*2013^2014

=(x+y)^2+(x-3)^2+(y-3)^2+2*2013^2014-18>=2*2013^2014-18

GTNN=2*2013^2014-18

KHi x=y=3

Vì 2013^2014 lớn quá ko tính ra dc

22 tháng 3 2016

bạn Nguyễn Tuấn làm vậy đâu được

 để B đạt GTNN đó thì phải đủ 3 điều kiện là 

x+y=0

x-3=0

y-3=0

bạn kết luận x=y=3 thì x+y=0 sao được

bài này có cách giải khác

12 tháng 5 2018

a) \(P=\dfrac{\left(x^2+2xy+9y^2\right)-\left(x+3y-2\sqrt{xy}\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)

\(=\dfrac{\left(x^2+6xy+9y^2\right)-\left(x+3y\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)

\(=\dfrac{\left(x+3y\right)^2-\left(x+3y\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)

\(=\dfrac{\left(x+3y\right)\left(x+3y-2\sqrt{xy}\right)}{x+3y-2\sqrt{xy}}\)

\(P=x+3y\)

b) \(\dfrac{P}{\sqrt{xy}+y}=\dfrac{x+3y}{\sqrt{xy}+y}=\dfrac{\left(x+3y\right):y}{\left(\sqrt{xy}+y\right):y}=\dfrac{\dfrac{x}{y}+3}{\sqrt{\dfrac{x}{y}}+1}\)

Đặt \(t=\sqrt{\dfrac{x}{y}}>0\)\(\dfrac{P}{\sqrt{xy}+y}=Q\) thì \(Q=\dfrac{t^2+3}{t+1}=\dfrac{\left(t-1\right)^2+2\left(t+1\right)}{t+1}=2+\dfrac{\left(t-1\right)^2}{t+1}\ge2\)

\(Q_{min}=2\Leftrightarrow t=1\Leftrightarrow x=y\)

AH
Akai Haruma
Giáo viên
31 tháng 5 2019

Lời giải:

Áp dụng BĐT Cauchy cho các số dương:

\(x^2+1\geq 2x\); \(y^2+1\geq 2y\)

\(\Rightarrow M=x^2+y^2+\frac{3}{x+y+1}\geq 2x+2y-2+\frac{3}{x+y+1}\)

hay \(M\geq \frac{5}{3}(x+y)-\frac{7}{3}+\frac{x+y+1}{3}+\frac{3}{x+y+1}\)

Tiếp tục áp dụng BĐT Cauchy:

\(\frac{x+y+1}{3}+\frac{3}{x+y+1}\geq 2\)

\(x+y\geq 2\sqrt{xy}=2\)

Do đó: \(M\geq \frac{5}{3}.2-\frac{7}{3}+2=3\)

Vậy GTNN của $M$ là $3$. Dấu "=" xảy ra khi $x=y=1$

1. Cho các số thực dương x,y thỏa mãn x + xy + y = 8. Tính GTNN của biểu thức \(A=x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\) 2. Cho a,b,c > 1. Tính GTNN của biểu thức \(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\) 3. Cho 2 số \(x,y\ne0\) thỏa mãn đẳng thức sau: \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\). Tính GTLN của biểu thức \(C=\frac{1}{xy}\) 4. Cho các số thực dương a,b,c thỏa mãn abc = 1. Cmr:...
Đọc tiếp

1. Cho các số thực dương x,y thỏa mãn x + xy + y = 8. Tính GTNN của biểu thức \(A=x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\)

2. Cho a,b,c > 1. Tính GTNN của biểu thức \(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)

3. Cho 2 số \(x,y\ne0\) thỏa mãn đẳng thức sau: \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\). Tính GTLN của biểu thức \(C=\frac{1}{xy}\)

4. Cho các số thực dương a,b,c thỏa mãn abc = 1. Cmr: \(D=\frac{a^4}{b^2\left(c+2\right)}+\frac{b^4}{c^2\left(a+2\right)}+\frac{c^4}{a^2\left(b+2\right)}\ge1\)

5. Cho a,b,c là các số dương không lớn hơn 1. Cmr: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)

6. Cho 2 số thực x,y thỏa mãn điều kiện \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\). Cmr: \(\frac{9+3\sqrt{21}}{2}\le x+y\le9+3\sqrt{15}\).

7. Cho x,y,z là các số thực dương thỏa mãn x + y + z = 1. Cmr: \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\).

8. Cho x,y,z là các số thực dương thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015.\) Tìm GTNN của biểu thức: \(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\).

9. Cho các số thực dương x,y thỏa mãn \(\left(x+y-1\right)^2=xy\). Tìm GTNN của biểu thức: \(M=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\).

10. Tìm m để phương trình \(mx^2-\left(5m-2\right)x+6m-5=0\) có 2 nghiệm nghịch đảo nhau.

11. Cho 2 số thực dương x,y thỏa mãn \(x^2+y\ge1\). Tìm GTNN của biểu thức: \(N=y^2+\left(x^2+2\right)^2\).

12. Cho 9 số thực \(a_1,a_2,...,a_9\) không nhỏ hơn -1 và \(a_1^3+a_2^3+...+a_9^3=0\). Tính GTLN của biểu thức \(Q=a_1+a_2+...+a_9\).

13. cho a,b,c > 0 và a + b + c = 1. Cmr: \(\sqrt{2015a+1}+\sqrt{2015b+1}+\sqrt{2015c+1}< 78\)

Mn làm giúp mk với. Mk đang cần gấp

15
AH
Akai Haruma
Giáo viên
30 tháng 4 2019

Bài 1:

Áp dụng BĐT AM-GM:

\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)

\(\Rightarrow 4\leq x+y\)

Tiếp tục áp dụng BĐT AM-GM:

\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)

\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)

\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)

Mà:

\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)

\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)

\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)

Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2019

Bài 2:

\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)

\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)

\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)

\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)

\(\Rightarrow B\geq 24\)

Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)

10 tháng 9 2017

\(\sqrt[3]{y-\sqrt{y^2+1}}\times\sqrt[3]{y+\sqrt{y^2+1}}\)

\(=\sqrt[3]{\left[y^2-\left(y^2+1\right)\right]}=\sqrt[3]{-1}=-1\)

nên ta có thể đặt \(\sqrt[3]{y-\sqrt{y^2+1}}=t\)

\(\Rightarrow\sqrt[3]{y+\sqrt{y^2+1}}=-\dfrac{1}{t}\)

\(\sqrt[3]{y-\sqrt{y^2+1}}=t\)

\(\Leftrightarrow y-\sqrt{y^2+1}=t^3\)

\(\Leftrightarrow t^3+\sqrt{1+y^2}=y\)

\(\Leftrightarrow t^6+2t^3\sqrt{y^2+1}+1+y^2=y^2\)

\(\Leftrightarrow\sqrt{y^2+1}=\dfrac{-t^6-1}{2t^3}\)

\(\Leftrightarrow y^2=\dfrac{t^{12}+2t^6+1}{4t^6}-1\)

\(\Leftrightarrow y^2=\dfrac{t^{12}-2t^6+1}{4t^6}\)

\(\Leftrightarrow y=\dfrac{t^6-1}{2t^3}\)

- - -

\(x=t-\dfrac{1}{t}=\dfrac{t^2-1}{t}\)

\(\Rightarrow x^3=\dfrac{t^6-3t^4+3t^2-1}{t^3}=2y-\dfrac{3t^2\left(t^2-1\right)}{t^3}=2y-\dfrac{3\left(t^2-1\right)}{t}=2y-3x\)

\(A=x^4+x^3y+3x^2+xy-2y^2+2014\)

\(=x^3\left(x+y\right)+3\left(x-y\right)\left(x+y\right)+y\left(x+y\right)+2014\)

\(=\left(x+y\right)\left(x^3+3x-2y\right)+2014\)

\(=\left(x+y\right)\left(2y-3x+3x-2y\right)+2014\)

= 2014

11 tháng 9 2017

Ta có: \(x=\sqrt[3]{y-\sqrt{y^2+1}}+\sqrt[3]{y+\sqrt{y^2+1}}\)

\(\Leftrightarrow x^3=y-\sqrt{y^2-1}+y+\sqrt{y^2+1}+3\left(\sqrt[3]{y-\sqrt{y^2+1}}+\sqrt[3]{y+\sqrt{y^2+1}}\right)\sqrt[3]{y-\sqrt{y^2+1}}.\sqrt[3]{y+\sqrt{y^2+1}}\)

\(\Leftrightarrow x^3=2y-3x\)

Thế vô B ta được

\(B=\left(2y-3x\right)x+\left(2y-3x\right)y+3x^2+xy-2y^2+2014\)

\(=2014\)

27 tháng 11 2019

\(P=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)

\(\ge\frac{\left(x+y+x+y\right)^2}{x^2+y^2+2xy}+\frac{4xy}{2xy}=\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}+2=6\)

"=" xảy ra <=> x = y.

\(\)