Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2B=2x^2+2y^2+2xy-6x-6y+2*2013^2014
=(x+y)^2+(x-3)^2+(y-3)^2+2*2013^2014-18>=2*2013^2014-18
GTNN=2*2013^2014-18
KHi x=y=3
Vì 2013^2014 lớn quá ko tính ra dc
bạn Nguyễn Tuấn làm vậy đâu được
để B đạt GTNN đó thì phải đủ 3 điều kiện là
x+y=0
x-3=0
y-3=0
bạn kết luận x=y=3 thì x+y=0 sao được
bài này có cách giải khác
a) \(P=\dfrac{\left(x^2+2xy+9y^2\right)-\left(x+3y-2\sqrt{xy}\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)
\(=\dfrac{\left(x^2+6xy+9y^2\right)-\left(x+3y\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)
\(=\dfrac{\left(x+3y\right)^2-\left(x+3y\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)
\(=\dfrac{\left(x+3y\right)\left(x+3y-2\sqrt{xy}\right)}{x+3y-2\sqrt{xy}}\)
\(P=x+3y\)
b) \(\dfrac{P}{\sqrt{xy}+y}=\dfrac{x+3y}{\sqrt{xy}+y}=\dfrac{\left(x+3y\right):y}{\left(\sqrt{xy}+y\right):y}=\dfrac{\dfrac{x}{y}+3}{\sqrt{\dfrac{x}{y}}+1}\)
Đặt \(t=\sqrt{\dfrac{x}{y}}>0\) và \(\dfrac{P}{\sqrt{xy}+y}=Q\) thì \(Q=\dfrac{t^2+3}{t+1}=\dfrac{\left(t-1\right)^2+2\left(t+1\right)}{t+1}=2+\dfrac{\left(t-1\right)^2}{t+1}\ge2\)
\(Q_{min}=2\Leftrightarrow t=1\Leftrightarrow x=y\)
Lời giải:
Áp dụng BĐT Cauchy cho các số dương:
\(x^2+1\geq 2x\); \(y^2+1\geq 2y\)
\(\Rightarrow M=x^2+y^2+\frac{3}{x+y+1}\geq 2x+2y-2+\frac{3}{x+y+1}\)
hay \(M\geq \frac{5}{3}(x+y)-\frac{7}{3}+\frac{x+y+1}{3}+\frac{3}{x+y+1}\)
Tiếp tục áp dụng BĐT Cauchy:
\(\frac{x+y+1}{3}+\frac{3}{x+y+1}\geq 2\)
\(x+y\geq 2\sqrt{xy}=2\)
Do đó: \(M\geq \frac{5}{3}.2-\frac{7}{3}+2=3\)
Vậy GTNN của $M$ là $3$. Dấu "=" xảy ra khi $x=y=1$
Bài 1:
Áp dụng BĐT AM-GM:
\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)
\(\Rightarrow 4\leq x+y\)
Tiếp tục áp dụng BĐT AM-GM:
\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)
\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)
\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)
Mà:
\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)
\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)
\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)
Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)
Bài 2:
\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)
\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)
\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)
\(\Rightarrow B\geq 24\)
Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)
Vì \(\sqrt[3]{y-\sqrt{y^2+1}}\times\sqrt[3]{y+\sqrt{y^2+1}}\)
\(=\sqrt[3]{\left[y^2-\left(y^2+1\right)\right]}=\sqrt[3]{-1}=-1\)
nên ta có thể đặt \(\sqrt[3]{y-\sqrt{y^2+1}}=t\)
\(\Rightarrow\sqrt[3]{y+\sqrt{y^2+1}}=-\dfrac{1}{t}\)
\(\sqrt[3]{y-\sqrt{y^2+1}}=t\)
\(\Leftrightarrow y-\sqrt{y^2+1}=t^3\)
\(\Leftrightarrow t^3+\sqrt{1+y^2}=y\)
\(\Leftrightarrow t^6+2t^3\sqrt{y^2+1}+1+y^2=y^2\)
\(\Leftrightarrow\sqrt{y^2+1}=\dfrac{-t^6-1}{2t^3}\)
\(\Leftrightarrow y^2=\dfrac{t^{12}+2t^6+1}{4t^6}-1\)
\(\Leftrightarrow y^2=\dfrac{t^{12}-2t^6+1}{4t^6}\)
\(\Leftrightarrow y=\dfrac{t^6-1}{2t^3}\)
- - -
\(x=t-\dfrac{1}{t}=\dfrac{t^2-1}{t}\)
\(\Rightarrow x^3=\dfrac{t^6-3t^4+3t^2-1}{t^3}=2y-\dfrac{3t^2\left(t^2-1\right)}{t^3}=2y-\dfrac{3\left(t^2-1\right)}{t}=2y-3x\)
\(A=x^4+x^3y+3x^2+xy-2y^2+2014\)
\(=x^3\left(x+y\right)+3\left(x-y\right)\left(x+y\right)+y\left(x+y\right)+2014\)
\(=\left(x+y\right)\left(x^3+3x-2y\right)+2014\)
\(=\left(x+y\right)\left(2y-3x+3x-2y\right)+2014\)
= 2014
Ta có: \(x=\sqrt[3]{y-\sqrt{y^2+1}}+\sqrt[3]{y+\sqrt{y^2+1}}\)
\(\Leftrightarrow x^3=y-\sqrt{y^2-1}+y+\sqrt{y^2+1}+3\left(\sqrt[3]{y-\sqrt{y^2+1}}+\sqrt[3]{y+\sqrt{y^2+1}}\right)\sqrt[3]{y-\sqrt{y^2+1}}.\sqrt[3]{y+\sqrt{y^2+1}}\)
\(\Leftrightarrow x^3=2y-3x\)
Thế vô B ta được
\(B=\left(2y-3x\right)x+\left(2y-3x\right)y+3x^2+xy-2y^2+2014\)
\(=2014\)
\(P=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)
\(\ge\frac{\left(x+y+x+y\right)^2}{x^2+y^2+2xy}+\frac{4xy}{2xy}=\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}+2=6\)
"=" xảy ra <=> x = y.
\(\)