Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) f(x)= 4x3 - x2 + 2x - 5
+Thay x= -1 vào ta được:
f(x)= 4.(-1)3 - (-1)2 + 2.(-1) - 5
f(x)= (-4) - 1 + (-2) - 5
f(x)= (-7) - 5= -12
Vậy x= -1 không phải là nghiệm của đa thức f(x).
Mình chỉ làm được câu c) thôi nhé, còn câu d) thì mình đang nghĩ cách làm.
Chúc bạn học tốt!
a) f(x) + g(x) = (x5 + 2x2 - 1/2x2 - 1/2x - 5) + (-x5 - 3x2 + 1/2x + 1)
= x5 + 2x2 - 1/2x2 - 1/2x - 5 - x5 - 3x2 + 1/2x + 1
= (x5 - x5) + (2x2 - 1/2x2 - 3x2) + (-1/2x + 1/2x) + (-5 + 1)
= -3/2x2 - 4
f(x) - g(x) = (x5 + 2x2 - 1/2x2 - 1/2x - 5) - (-x5 - 3x2 + 1/2x + 1)
= x5 + 2x2 - 1/2x2 - 1/2x - 5 + x5 + 3x2 - 1/2x - 1
= (x5 + x5) + (2x2 - 1/2x2 + 3x2) + (-1/2 - 1/2x) + (-5 - 1)
= 2x5 + 9/2x2 - x - 6
b) f(x) + g(x) = -3/2x2 - 4
Ta có:
-3/2x2 > 0
=> -3/2x2 - 4 > 1 > 0
=> f(x) + g(x) vô nghiệm
a, ta có:
\(f\left(x\right)=x^5+2x^2-\frac{1}{2}x^2-5\)
\(=x^5+\frac{3}{2}x^2-\frac{1}{2}x-5\)
\(f\left(x\right)+g\left(x\right)=-\frac{3}{2}x^2-4\)(t lm tắt nhé)
\(f\left(x\right)-g\left(x\right)=2x^5+\frac{9}{2}-x-6\)
b,Để f(x)+g(x) có nghiệm thì
\(f\left(x\right)+g\left(x\right)=-\frac{3}{2}x^2-4=0\)
\(\Rightarrow-\frac{3}{2}x^2=4\)
\(\Rightarrow x^2=-2\)(k tồn tại)
vậy f(x)+g(x) k có nghiệm.
a, f(x) = -1/4 - 3x2 - 9x3 + 7x4 + x5
g(x) = 2x2 - x5 + 54 - 1/4
Áp dụng quy tắc tổng hiệu đó
\(f\left(x\right)=\dfrac{\left(x^3+6x^2+3x^4\right)+\left(2x^3-x^2+3x^4\right)}{2}\)
Vậy \(f\left(x\right)=\dfrac{6x^4+3x^3+5x^2}{2}=3x^4+1,5x^3+2,5x^2\)
\(g\left(x\right)=\left(x^3+6x^2+3x^4\right)-f\left(x\right)\)
\(=\left(x^3+6x^2+3x^4\right)-\left(3x^4+1,5x^3+2,5x^2\right)\)
\(=x^3+6x^2+3x^4-3x^4-1,5x^3-2,5x^2\)
\(=\left(3x^4-3x^4\right)+\left(x^3-1,5x^3\right)+\left(6x^2-2,5x^2\right)\)
Vậy \(g\left(x\right)=-0,5x^3+3,5x^2\)
Xét [\(f\left(x\right)+g\left(x\right)\)]+[\(f\left(x\right)-g\left(x\right)\)]=\(\left[2x^4+5x^2-3x\right]\)+\(\left[x^4-x^2+2x\right]\)
\(2f\left(x\right)=2x^4+5x^2-3x+x^4-x^2+2x\)
\(2f\left(x\right)=3x^4+4x^2-x\)
\(\Rightarrow f\left(x\right)=\dfrac{3x^4+4x^2-x}{2}\)
\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^4+2x^2-\dfrac{1}{2}x\)
Xét \(\left[f\left(x\right)+g\left(x\right)\right]-\left[f\left(x\right)-g\left(x\right)\right]=\)\(\left[2x^4+5x^2-3x\right]\)\(-\)\(\left[x^4-x^2+2x\right]\)
\(2g\left(x\right)=\)\(2x^4+5x^2-3x-x^4+x^2-2x\)
\(2g\left(x\right)=x^4+6x^2-5x\)
\(\Rightarrow g\left(x\right)=\dfrac{x^4+6x^2-5x}{2}\)
\(\Rightarrow g\left(x\right)=\dfrac{1}{2}x^4+3x^2-\dfrac{5}{2}x\)
a, \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)
\(=\left(x^3-2x^3+3x+1\right)-\left(x^3+x+1\right)+\left(2x^2-1\right)\)
\(=x^3-2x^3+3x+1-x^3-x-1+2x^2-1\)
\(=\left(x^3-2x^3-x^3\right)+2x^2+\left(3x-x\right)+\left(1-1-1\right)\)
\(=-2x^3+2x^2+2x-1\)
xét h(x) =0
<=> 5x+3=0
5x=-3
x=-3/5
vậy nghiệm của đa thức h(x) là x=-3/5
f(x) + g(x) = (x⁵ - 3x² + x³ - x² - 2x + 5) + (x² - 3x + 1 + x² - x⁴ + x⁵)
= x⁵ - 3x² + x³ - x² - 2x + 5 + x² - 3x + 1 + x² - x⁴ + x⁵
= (x⁵ + x⁵) - x⁴ + x³ + (-3x² - x² + x² + x²) + (-2x - 3x) + (5 + 1)
= 2x⁵ - x⁴ + x³ - 2x² - 5x + 6
---------
f(x) - g(x) = (x⁵ - 3x² + x³ - x² - 2x + 5) - (x² - 3x + 1 + x² - x⁴ + x⁵)
= x⁵ - 3x² + x³ - x² - 2x + 5 - x² + 3x - 1 - x² + x⁴ - x⁵
= (x⁵ - x⁵) + x⁴ + x³ + (-3x² - x² - x² - x²) + (-2x + 3x) + (5 - 1)
= x⁴ + x³ - 6x² + x + 4