Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) [(3x-39):7] .36 =7236
[ ( 3x - 39 ) : 7 ] = 7236 : 36
[ ( 3x - 39 ) :7 ] = 201
( 3x - 39 ) = 201 . 7
( 3x - 39 ) = 1407
3x = 1407 + 39
3x = 1446
x = 1446 :3
x = 482
A) \(2.3^{x+2}+4.3^{x+1}=10.3^6\)
=> \(2.3.3^{x+1}+4.3^{x+1}=10.3^6\)
=> \(6.3^{x+1}+4.3^{x+1}=10.3^6\)
=> \(\left(6+4\right).3^{x+1}=10.3^6\)
=> \(10.3^{x+1}=10.3^6\)
=> \(3^{x+1}=3^6\)
=> \(x+1=6\)
=> \(x=6-1\)
=> \(x=5\)
Vậy \(x=5.\)
B) \(6.8^{x-1}+8^{x+1}=6.8^{19}+8^{21}\)
=> \(6.8^{x-1}+8^{x-1}.8^2=6.8^{19}+8^{19}.8^2\)
=> \(8^{x-1}.\left(6+8^2\right)=8^{19}.\left(6+8^2\right)\)
=> \(8^{x-1}=8^{19}\)
=> \(x-1=19\)
=> \(x=19+1\)
=> \(x=20\)
Vậy \(x=20.\)
Còn câu c) thì mình đang nghĩ nhé.
Chúc bạn học tốt!
2.3x+2+4.3x+1=10.36
=>2.3.3x+1+4.3x+1=10.36
=>(6+4).3x+1=10.36
=>10.3x+1=10.36
=>3x+1=36
=>x+1=6
=>x=5
\(=\dfrac{\left[\dfrac{2^{13}\cdot3^{14}}{3^{13}}+\dfrac{3^{18}}{2^{12}}:\dfrac{3^{12}}{2^{24}}\right]}{2^{12}\cdot3^4+2^{12}\cdot3^2}\)
\(=\dfrac{\left[\dfrac{2^{13}}{3}+\dfrac{2^{12}}{3^6}\right]}{2^{12}\cdot3^2\cdot\left(3^2+1\right)}=\dfrac{2^{12}\cdot\left(\dfrac{2}{3}+\dfrac{1}{3^6}\right)}{2^{12}\cdot3^2\cdot10}\)
\(=\left(\dfrac{487}{729}\right):\dfrac{1}{90}=\dfrac{4870}{81}\)
1:
\(\Leftrightarrow4\cdot3^x\cdot\dfrac{1}{9}+2\cdot3^x\cdot3=4\cdot3^4+2\cdot3^7\)
\(\Leftrightarrow3^x\cdot\left(\dfrac{4}{9}+6\right)=3^4\cdot\left(4+2\cdot3^3\right)\)
\(\Leftrightarrow3^x=729\)
hay x=6
2: \(\Leftrightarrow3^x\cdot4\cdot\dfrac{1}{3}+3^x\cdot2\cdot9=4\cdot3^6+2\cdot3^9\)
\(\Leftrightarrow3^x\cdot\dfrac{58}{3}=42282\)
=>3x=2187
hay x=7
\(8^{15}\times4^{13}=2^{45}\times2^{26}=2^{71}\)
\(\left(\frac{1}{2}\right)^{18}\times\left(\frac{1}{4}\right)^{24}=\left(\frac{1}{2}\right)^{18}\times\left(\frac{1}{2}\right)^{48}=\left(\frac{1}{2}\right)^{66}\)
\(9^{12}\times27^{10}=3^{24}\times3^{30}=3^{54}\)
\(8^{15}\cdot4^{13}=\left(4^2\right)^{15}\cdot4^{13}=4^{30}\cdot4^{13}=4^{43}\)
\(\left(\frac{1}{2}\right)^{18}\cdot\left(\frac{1}{4}\right)^{24}=\left(\frac{1}{2}\right)^{18}\cdot\left[\left(\frac{1}{2}\right)^2\right]^{24}=\left(\frac{1}{2}\right)^{66}\)
\(9^{12}\cdot27^{10}=3^{36}\cdot3^{30}=3^{66}\)