K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2024

  Đây là toán nâng cao chuyên đề tổng các phân số có quy luật, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm.vn sẽ hướng dẫn các em giải chi tiết dạng này như sau: 

                               

A = \(\dfrac{1}{7^2}\) + \(\dfrac{1}{8^2}\) + \(\dfrac{1}{9^2}\) + ... + \(\dfrac{1}{100^2}\) > 0

\(\dfrac{1}{7^2}\) <  \(\dfrac{1}{6.7}\) = \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\)

\(\dfrac{1}{8^2}\) < \(\dfrac{1}{7.8}\) = \(\dfrac{1}{7}\) - \(\dfrac{1}{8}\)

\(\dfrac{1}{9^2}\) < \(\dfrac{1}{8.9}\) = \(\dfrac{1}{8}\) - \(\dfrac{1}{9}\)

...........................

\(\dfrac{1}{100^2}\) < \(\dfrac{1}{99.100}\) = \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)

Cộng vế với vế ta có:

0 < \(\dfrac{1}{7^2}\) + \(\dfrac{1}{8^2}\) + \(\dfrac{1}{9^2}\) + ... + \(\dfrac{1}{100^2}\) < \(\dfrac{1}{6}\) - \(\dfrac{1}{100}\) < 1 - \(\dfrac{1}{100}\) < 1 

Vậy A = \(\dfrac{1}{7^2}\) + \(\dfrac{1}{8^2}\) + \(\dfrac{1}{9^2}\) + ... + \(\dfrac{1}{100^2}\) không phải là số nguyên vì không thể tồn tại một số nguyên giữa hai số nguyên liên tiếp. 

Vậy A không phải là số nguyên.

 

9 tháng 8 2016

Để quy đồng mẫu các phân số trong tổng A = 1/2 + 1/3 + 1/4 + ... + 1/100, ta chọn mẫu chung là tích của 2^6 với các thừa số lẻ nhỏ hơn 100. Gọi k1,k2,... k100 là các thừa số phụ tương ứng, tổng A có dạng: B=(k1+k2+k3+...+k100)/(2^6.3.5.7....99).
Trong 100 phân số của tổng A chỉ có duy nhất phân số 1/64 có mẫu chứa 2^6 nên trong các thừa số phụ k1,k2,...k100 chỉ có k64 (thừa số phụ của 1/64) là số lẻ (bằng 3.5.7....99), còn các thừa số phụ khác đều chẵn (vì chứa ít nhất một thừa số 2). Phân số B có mẫu chia hết cho 2 còn tử không chia hết cho 2, do đó B (tức là A) không thể là số tự nhiên.
Ngoài ra với trường hợp tổng quát, hạng tử cuối là 1/n (n là số tự nhiên), ta chọn mẫu chung là 2^k với các thừa số lẻ không vượt quá n, trong đó k là số lớn nhất mà 2^k <= n. Chỉ có thừa số phụ của 1/2^k là số lẻ còn các thừa số phụ khác đều chẵn.
Còn cách giải khác nữa cùng trong sách Nâng cao và phát triển Toán 6 tập hai bạn có thể tham khảo thêm nhé. Chúc bạn học giỏi!

Xét 1/2 + 1/3 + 1/4
1/2 + 1/4 = (2+4)/(2.4) = 2.3/[(3-1)(3+1)] = 2.3/(3^2 - 1) > 2.3/3^2 = 2/3 = 2.(1/3)
---> 1/2+1/3+1/4 > 3.(1/3) = 1 (1)
Lại xét 1/5 + 1/6 + ... + 1/9 + ... + 1/13
1/8+1/10 = (8+10)/(8.10) = 2.9/(9^2 - 1) > 2.9/9^2 = 2/9 = 2.(1/9)
Tương tự cm được 1/7+1/11 > 2.(1/9) ; 1/6+1/12 > 2.1/9; ...; 1/5+1/13 > 2.1/9
---> 1/5+1/6+ ... + 1/13 > 9.(1/9) = 1 (2)
Tiếp tục xài chiêu đó, cm được 1/14+1/15+ ... + 1/38 > 25.(1/25) = 1 (3)
(1),(2),(3) ---> a > 3 (*)

Mặt khác
1/2 + 1/3 + 1/6 = 1 (4)
1/4 + 1/5 + 1/20 = 1/2 (5)
1/7 + 1/8 + 1/9 < 3.(1/7) = 3/7 (6)
1/10+1/11+ ...+1/14 < 5.(1/10) = 1/2 (7)
1/15+1/16+ ...+1/19 < 5.(1/15) = 1/3 (8)
1/21+1/22+ ...+1/26 < 6.(1/21) = 2/7 (9)
1/27+1/28+ ...+1/50 < 24.(1/27) = 8/9 (10)
Cộng (4),(5),(6),(7), (8),(9),(10) ---> a < 2 + 5/7 + 11/9 < 2 + 7/9 + 11/9 = 4 (**)

Từ (*) và (**) ---> 3 < c < 4 ---> a ko phải là số tự nhiên.

====================================
Cách khác (tổng quát hơn, trừu tượng hơn)
Quy đồng mẫu số :
Chọn mẫu số chung là M = BCNN(2;3;4;...;50) = k.2^5 = 32k (k là số tự nhiên lẻ)
Đặt T2 = M/2; T3 = M/3; ...; T50 = M/50
---> a = (T2+T3+ ... + T50) / M
Chú ý rằng T2,T3,...,T50 đều chẵn, chỉ riêng T32 = M/32 = k là lẻ, còn M chẵn
---> T2+T3+...T50 lẻ.Số lẻ ko thể là bội của số chẵn ---> c ko phải là số tự nhiên.

17 tháng 5 2016

Đặt A=1/1^2+1/2^2+1/3^2+...+1/100^2

       A=1+1/2^2+1/3^2+...+1/100^2>1(1)

      A<1+1/1*2+1/2*3+...+1/99*100

      A<1+1-1/2+1/2-1/3+...+1/99-1/100

     A<2-1/100<2

=>A<2(2)

Từ (1) và (2)=>1<A<2

Nên A không thể là số nguyên

17 tháng 5 2016

Đặt S= 1/1^2+1/2^2+1/3^2+...+1/100^2

Ta có:1/22<1/1x2

          1/32<1/2x3

           . . .

          1/992<1/89x99

          1/1002<1/99x100

=> S<1/1x2+1/2x3+1/3x4+1/4x5+...+1/89x99+1/99x100

=> S<1-1/2+1/2-1/3+...+1/89-1/99+1/99-1/100

=> S<1-1/100

=> S<99/100

       Mà 99/100<1

Vậy S không phải số nguyên.

cmr [7+1].[7+2] chia hết cho 3

=8x9

=72

72 chia hết cho 3

ĐCPCM

   Ta có chú ý chẵn cộng chẵn bằng chẵn

                        lẻ cộng chẵn bằng lẻ

                        lẻ cộng lẻ là chẵn

mà ta thấy \(3^{100}\) và\(19^{990}\)là lẻ mà lẻ cộng lẻ bằng chẵn 

=> mà số chẵn chia hết cho 2

ĐCPCM

S=1+31+32+33+...+330

3S=3+3^2+3^3+...+3^{31}3S=3+32+33+...+331

3S-S=3^{31}-13SS=3311

2S=3^{4.7+3}-12S=34.7+31

2S=81^7.27-12S=817.271

2S=\overline{......1}.27-12S=......1.271

2S=\overline{......7}-1=\overline{......6}2S=......71=......6

S=\overline{........3}S=........3

Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương

27 tháng 11 2019

1) CMR: (7+1)(7+2)\(⋮\)3

\(\left(7+1\right)\left(7+2\right)=8\cdot9⋮3\left(đpcm\right)\)

2) CMR: \(3^{100}+19^{990}⋮2\)

ta có: \(3^{100}\)có chữ số tận cùng là số lẻ

\(19^{990}\)có chữ số tận cùng là số lẻ

mà lẻ + lẻ = chẵn => đpcm

3) abcabc có ít nhất 3 ước số nguyên tố

ta có: abcabc = abc x 1001 = abc x 11 x 7 x 13

Vậy...

4) Cho \(M=1+3^1+3^2+...+3^{30}\)

Tìm chữ số tận cùng của M. Từ đó suy ra M có phải số chính phương không?

ta có: \(M=1+3^1+3^2+...+3^{30}\)(1)

\(\Rightarrow3M=3+3^2+3^3+...+3^{31}\)(2)

(2) - (1) \(\Leftrightarrow3M-M=\left(3+3^2+3^3+...+3^{31}\right)-\left(1+3^1+3^2+...+3^{30}\right)\)

\(\Leftrightarrow2M=3^{31}-1\)

ta có: \(3^{31}=3^{28}\cdot3^3=\left(3^4\right)^7\cdot27=\left(...1\right).27=...7\Rightarrow2M=...7-1=...6\)

\(\Rightarrow\orbr{\begin{cases}M=...3\\M=...8\end{cases}}\)mà số chính phương không có tận cùng là 3, 8

=>đpcm

Học tốt nhé ^3^

23 tháng 7 2018

Ta có: 
A= 1+1/2+1/4+1/8+....+1/256

Đặt 1/2+1/4+1/8+...+1/256 là S.
Ta có: 
S = 1/2+1/4+1/8+...+1/256
2S=1+1/2+1/4+....+1/128
2S-S= 1+1/2+1/4+....+1/128 - 1/2-1/4-1/8-...-1/256
S=1-1/256
S= 255/256 
=> S không là số nguyên
S+1 = \(1\frac{255}{256}\)=A
=> A không là số nguyên
Vậy A không phải là số nguyên

23 tháng 7 2018

Cho \(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}+\frac{1}{256}\)

\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\)

\(\Rightarrow2B-B=1-\frac{1}{256}\)

\(\Rightarrow B=1-\frac{1}{256}< 1\)

\(\Rightarrow1+1-\frac{1}{256}< 1+1=2\)

Thay B vaof A

\(A=1+1-\frac{1}{256}< 1+1=2\)

\(\Rightarrow A< 2\)

maf \(A=1+\left(1-\frac{1}{256}\right)>1\)

=> \(1< A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}< 2\)

=> A khong phai la so tu nhien

8 tháng 11 2021

<1+99) + <2 + 98) + <3 + 97 ) .... +50+100

= 100+100+100+100+100+...+100+50             +49 lần 100 nha

=4950

Máy tính mình bị hư nút Mở Ngoặc nên mình thay bằng dấu < nha bạn

23 tháng 11 2014

1/

Gọi tổng này là A.

A=6+62+63+64+...+697+698+699+6100

A=(6.1+6.6+6.62+6.63)+...+(697.1+697.6+697.62+697.63)

A=6.(1+6+62+63)+...+697.(1+6+62+63)

A=6.259+...+697.259

A=259.(6+...+697) chia hết cho 259

2/

(hình như số cuối cùng phải là 1000)

3/

Không,vì còn số 0 và 1 không là số nguyên tố hay hợp số