Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 . 6 = 3 . 4 + 2 . 3 rùi đấy bạn, bn xét từng tích rùi sẽ thấy thôi.
\(A=1\left(2+2\right)+2\left(2+3\right)+3\left(2+4\right)+.....+\left(n-1\right)\left(2+n\right)\)
\(\Leftrightarrow A=1.2+1.2+2.3+2.2+3.4+2.3+....+\left(n-1\right)n+2\left(n-1\right)\)
\(\Leftrightarrow A=\left(1.2+2.3+.....+\left(n-1\right)n\right)+2\left(1+2+3+....+\left(n-1\right)\right)\)
Giả sử A=B+C
Với \(\begin{cases}B=1.2+2.3+.....+\left(n-1\right)n\\C=2\left[1+2+....+\left(n-1\right)\right]\end{cases}\)
Ta có
\(3B=1.2.\left(3-0\right)+2.3.\left(4-1\right)+......+\left(n-1\right)n\left[\left(n+1\right)-\left(n-2\right)\right]\)
\(\Rightarrow3B=1.2.3-0.1.2+2.3.4-1.2.3+.....+\left(n-1\right)n\left(n+1\right)-\left(n-2\right)\left(n-1\right)n\)
\(\Rightarrow B=\frac{\left(n-1\right)n\left(n+1\right)}{3}\)
Mặt khác
\(C=2\left[1+2+....+\left(n-1\right)\right]\)
\(\Rightarrow C=2.\frac{\left[\left(n-1\right)+1\right]n}{2}=n^2\)
\(\Rightarrow A=\frac{\left(n-1\right)n\left(n+1\right)}{3}+n^2\)
Vậy \(A=\frac{\left(n-1\right)n\left(n+1\right)}{3}+n^2\)
A = 1.4 + 2.5 + 3.6 + ... + 99.102
A = 1.(2 + 2) + 2.(3 + 2) + 3.(4 + 2) + ... + 99.(100 + 2)
A = (1.2 + 2.3 + 3.4 + ... + 99.100) + (1.2 + 2.2 + 3.2 + ... + 99.2)
Đặt B = 1.2 + 2.3 + 3.4 + ... + 99.100
3B = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)
3B = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
3B = 99.100.101
B = 33.100.101 = 333300
A = 333300 + 2.(1 + 2 + 3 + ... + 99)
A = 333300 + 2.(1 + 99).99:2
A = 333300 + 100.99
A = 333300 + 9900
A = 343200
A = 1.4 + 2.5 + 3.6 +...+ 99.102
A = 1(2+2)+2(3+2)+3(4+2)+.+99(100+2)
A = 1.2+1.2+2.3+2.2+3.4+3.2+.+99.100+99.2
A = (1.2+2.3+3.4+.+99.100)+2(1+2+3+.+99)
Đặt A = 1.4 + 2.5 + 3.6 + ... + 100.103
= 1.(2 + 2) + 2.(3 + 2) + 3.(4 + 2) +.... + 100.(101 + 2)
= 1.2 + 2.3 + 3.4 + ... + 100.101 + (1.2 + 2.2 + 3.2 + ... + 100.2)
= 1.2 + 2.3 + 3.4 + ... + 100.101 + 2(1 + 2 + 3 + .... + 100)
= 1.2 + 2.3 + 3.4 + .... + 100.101 + 2.100.(100 + 1) : 2
= 1.2 + 2.3 + 3.4 + ... + 100.101 + 10100
Đặt B = 1.2 + 2.3 + 3.4 + .... + 100.101
=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + .... + 100.101.3
=> 3B = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 100.101.(102 - 99)
=> 3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 100.101.102 - 99.100.101
=> 3B = 100.101.102
=> B = 343400
Khi đó A = 343400 - 10100 = 333300
1 \(-\)\(\frac{1}{3.5}\)\(-\)\(\frac{1}{5.7}\)\(-\)\(\frac{1}{7.9}\)\(-\)..... \(-\)\(\frac{1}{53.55}\)\(-\)\(\frac{1}{55.57}\)
= 1 \(-\)( \(\frac{1}{3.5}\) + \(\frac{1}{5.7}\) + \(\frac{1}{7.9}\) + ..... + \(\frac{1}{53.55}\) + \(\frac{1}{55.57}\) )
= 1 \(-\)( \(\frac{1}{3}\)\(-\)\(\frac{1}{5}\)+ \(\frac{1}{5}\)\(-\)\(\frac{1}{7}\)+ \(\frac{1}{7}\)\(-\)\(\frac{1}{9}\)+....+ \(\frac{1}{53}\)\(-\)\(\frac{1}{55}\)+ \(\frac{1}{55}\)\(-\)\(\frac{1}{57}\)) . \(\frac{1}{2}\)
= 1 \(-\)( \(\frac{1}{3}\)\(-\)\(\frac{1}{57}\)) . \(\frac{1}{2}\)
= 1 \(-\) \(\frac{6}{19}\). \(\frac{1}{2}\)= 1 \(-\)\(\frac{3}{19}\)= \(\frac{16}{19}\)
\(1-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}-...-\frac{1}{53.55}-\frac{1}{55.57}\)
đặt \(A=1-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}-...-\frac{1}{53.55}-\frac{1}{55.57}\)
\(A=1-\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{53.55}+\frac{1}{55.57}\right)\)
đặt \(B=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{53.55}+\frac{1}{55.57}\)
\(2B=2\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{53.55}+\frac{1}{55.57}\right)\)
\(2B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{53.55}+\frac{2}{55.57}\)
\(2B=\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+....+\frac{55-53}{53.55}+\frac{57-55}{55.57}\)
\(2B=\frac{5}{3.5}-\frac{3}{3.5}+\frac{7}{5.7}-\frac{5}{5.7}+\frac{9}{7.9}-\frac{7}{7.9}+...+\frac{55}{53.55}-\frac{53}{53.55}+\frac{57}{55.57}-\frac{55}{55.57}\)
\(2B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{53}-\frac{1}{55}+\frac{1}{55}-\frac{1}{57}\)
\(2B=\frac{1}{3}-\frac{1}{57}\)
\(2B=\frac{54}{171}\)
\(\Rightarrow B=\frac{54}{171}:2\)
\(\Rightarrow B=\frac{9}{57}\)
mà \(A=1-B\)
\(\Rightarrow A=1-\frac{9}{57}\)
\(\Rightarrow A=\frac{48}{57}\)
chúc bạn học giỏi ^^