\(A=1.4+2.5+3.6+...+97.100\) .Khi đó : ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2015

T/c:A=1/1*2*3+1/2*3*4+1/3*4*5+1/4*5*6+...+1/97*98*99+1/98*99*100

2A=2/1*2*3+2/2*3*4+2/3*4*5+2/4*5*6+...+2/97*98*99+1/98*99*100

2A=(1/1*2-1/2*3)+(1/2*3-1/3*4)+(1/3*4-1/4*5)+.....+(1/97*98-1/98*99)+(1/98*99-1/99*100)

2A=1/2+1/99*100

A=tự tính nha

19 tháng 2 2018

A= [(1/2-1/2*3)/2]+[(1/2-1/3*4)/2]+...+[(1/2-1/99*100)/2]

A=(1/2-1/99*100)/2

A=-101/198/2

A=-101/396

5 tháng 4 2018

a/b=2 => a=2b thay vào D tính

18 tháng 8 2016

Theo đầu bài ta có:
\(Q=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Do \(a+b+c=259\Rightarrow\hept{\begin{cases}a=259-\left(b+c\right)\\b=259-\left(a+c\right)\\c=259-\left(a+b\right)\end{cases}}\)
Từ đó suy ra:
\(\Leftrightarrow Q=\frac{259-\left(b+c\right)}{b+c}+\frac{259-\left(a+c\right)}{a+c}+\frac{259-\left(a+b\right)}{a+b}\)
\(\Leftrightarrow Q=\left(\frac{259}{b+c}-\frac{b+c}{b+c}\right)+\left(\frac{259}{a+c}-\frac{a+c}{a+c}\right)+\left(\frac{259}{a+b}-\frac{a+b}{a+b}\right)\)
\(\Leftrightarrow Q=\left(259\cdot\frac{1}{b+c}+259\cdot\frac{1}{a+c}+259\cdot\frac{1}{a+b}\right)-\left(\frac{b+c}{b+c}+\frac{a+c}{a+c}+\frac{a+b}{a+b}\right)\)
\(\Leftrightarrow Q=259\cdot\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-\left(1+1+1\right)\)
Do \(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}=15\) nên:
\(\Leftrightarrow Q=259\cdot15-3\)
\(\Leftrightarrow Q=3882\)

18 tháng 8 2016

a=259-(b+c)
b=259-(c+a)
c=259-(a+b)
Thay vào Q
Q=259-(a+b)/a+b+259-(b+c)/b+c+259-(c+a)/c+a
Q=259/a+b+259/b+c+259/c+a-3
Q=259.(1/a+b+1/c+a+1/b)+c-3
Q=259x15-3
Q=3882

5 tháng 2 2016

minP=-9 khi x=5.

25 tháng 3 2016

cho lời giải cái

18 tháng 3 2017

\(\frac{2a-b}{a+b}=\frac{2}{3}\)

\(\Leftrightarrow6a-3b=2a+2b\)

\(\Leftrightarrow6a-2a=2b+3b\)

\(\Leftrightarrow4a=5b\)

\(\frac{b-c+a}{2a-b}=\frac{2}{3}\)

\(\Leftrightarrow4a-2b=3b-3c+3a\)

\(\Leftrightarrow4a-3a=3b-3c+2b\)

\(\Leftrightarrow a=5b-3c\)

\(\Leftrightarrow a=4a-3c\)

\(\Leftrightarrow3a=3c\)

\(\Rightarrow a=c\)

\(\Rightarrow P=\frac{\left(4a+4a\right)^5}{\left(4a+4a\right)^2\left(a+3a\right)^3}=\frac{\left(8a\right)^5}{\left(8a\right)^2\left(4a\right)^3}=\frac{\left(8a\right)^3}{\left(4a\right)^3}=\frac{8^3}{4^3}=2^3=8\)

18 tháng 3 2017

khó quá chịu

12 tháng 8 2018

\(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\le0\)

Nhận thấy:  \(\left|2x+1\right|\ge0\);     \(\left|x+y-\frac{1}{2}\right|\ge0\)

=>   \(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\ge0\)

Dấu "=" xảy ra  <=>  \(\hept{\begin{cases}2x+1=0\\x+y-\frac{1}{2}=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)

đến đây bạn thay x,y tìm đc vào A để tính nhé

22 tháng 12 2018

\(x^2-4x+1=0\)

( a = 1 ; b = -4 ; c =1 )

\(\Delta=b^2-4ac\) 

\(=\left(-4\right)^2-4.1.1\)

\(=16-4\)

\(=12>0\)

\(\sqrt{\Delta}=\sqrt{12}=2\sqrt{3}\)

Vì \(\Delta>0\) nên phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{4+2\sqrt{3}}{2.1}=2+\sqrt{3}\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-2\sqrt{3}}{2.1}=2-\sqrt{3}\)

Ta có : \(G=\frac{x^2}{x^4+1}\) 

. Thay \(x_1\) vào ta được : \(G=\frac{\left(2+\sqrt{3}\right)^2}{\left(2+\sqrt{3}\right)^4+1}\)

 \(=\frac{4+4\sqrt{3}+3}{\left(4+4\sqrt{3}+3\right)^2+1}\)

\(=\frac{4\sqrt{3}+7}{\left(4\sqrt{3}+7\right)^2+1}\)

\(=\frac{4\sqrt{3}+7}{48+56\sqrt{3}+49+1}\)

\(=\frac{4\sqrt{3}+7}{56\sqrt{3}+98}\)

\(=\frac{4\sqrt{3}+7}{14.\left(4\sqrt{3}+7\right)}\)

\(=\frac{1}{14}\)

.Thay \(x_2\) vào ta được : \(G=\frac{\left(2-\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)^4+1}\)

\(=\frac{4-4\sqrt{3}+3}{\left(4-4\sqrt{3}+3\right)^2+1}\)

\(=\frac{7-4\sqrt{3}}{\left(7-4\sqrt{3}\right)^2+1}\)

\(=\frac{7-4\sqrt{3}}{49-56\sqrt{3}+48+1}\)

\(=\frac{7-4\sqrt{3}}{98-56\sqrt{3}}\)

\(=\frac{7-4\sqrt{3}}{14.\left(7-4\sqrt{3}\right)}=\frac{1}{14}\)

Vậy giá trị của biểu thức là 1/14 

4 tháng 2 2016

30

ủng hộ mk nha

4 tháng 2 2016

mình mới học lớp 6