K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2015

sao câu 2+2:2 không có dấu = vậy

có vài câu không phải toán lớp 9 đâu

11 tháng 12 2016

2347102                                                                                                                                                                                                                   Nho cho minh 1 nhe

11 tháng 12 2016

lấy máy tính mà tính

12) \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)

\(=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)

13) \(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

\(=3\sqrt{5}-1-2\sqrt{5}+3\)

\(=\sqrt{5}+2\)

25 tháng 7 2021

giải tắt quá á đọc ko hiểu ạ

 

12 tháng 1 2017

1, =12

2,=28

3,180

4,50

5,20

12 tháng 1 2017

1) =12

2) =28

3) =180

4) =50

5) =20

14 tháng 5 2018

1/ \(7-2\sqrt{6}=\left(\sqrt{6}\right)^2-2\sqrt{6}+1\)

\(=\left(\sqrt{6}-1\right)^2\)

2/ \(10+2\sqrt{21}=\left(\sqrt{7}\right)^2+2.\sqrt{7}.\sqrt{3}+\left(\sqrt{3}\right)^2\)

\(=\left(\sqrt{7}+\sqrt{3}\right)^2\)

4/ \(10+4\sqrt{6}=2^2+2.2.\sqrt{6}+\left(\sqrt{6}\right)^2\)

\(=\left(2+\sqrt{6}\right)^2\)

5/ \(11-2\sqrt{30}=\left(\sqrt{6}\right)^2-2.\sqrt{6}.\sqrt{5}+\left(\sqrt{5}\right)^2\)

= \(\left(\sqrt{6}-\sqrt{5}\right)^2\)

8/ \(11+4\sqrt{7}=2^2+2.2.\sqrt{7}+\left(\sqrt{7}\right)^2\)

= \(\left(2+\sqrt{7}\right)^2\)

10/ \(12+6\sqrt{3}=3^2+2.3.\sqrt{3}+\left(\sqrt{3}\right)^2\)

= \(\left(3+\sqrt{3}\right)^2\)

2) Ta có: \(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}+\dfrac{12}{\sqrt{6}-3}-\sqrt{6}\)

\(=3\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)-\sqrt{6}\)

\(=3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}-\sqrt{6}\)

\(=-11\)

3) Ta có: \(\left(\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{6}+\sqrt{2}}\right)\left(\sqrt{3}-1\right)^2\)

\(=\left(\sqrt{5}+\sqrt{2}+\sqrt{6}-\sqrt{2}\right)\left(4-2\sqrt{3}\right)\)

\(=\left(\sqrt{6}+\sqrt{5}\right)\left(4-2\sqrt{3}\right)\)

\(=4\sqrt{6}-6\sqrt{2}+4\sqrt{5}-2\sqrt{15}\)

12 tháng 7 2021

còn câu 1

25 tháng 8 2019

a,\(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)\)

=\(\left(5+4\sqrt{2}\right)\left(9-4\left(1+\sqrt{2}\right)\right)\)

=\(\left(5+4\sqrt{2}\right)\left(9-4-4\sqrt{2}\right)\)

=\(\left(5+4\sqrt{2}\right)\left(5-4\sqrt{2}\right)=25-\left(4\sqrt{2}\right)^2\)

=-7

b, \(\sqrt{\frac{9}{4}-\sqrt{2}}=\sqrt{\frac{9-4\sqrt{2}}{4}}=\frac{\sqrt{9-4\sqrt{2}}}{2}=\frac{\sqrt{9-2\sqrt{8}}}{2}=\frac{\sqrt{\left(\sqrt{8}-1\right)^2}}{2}=\frac{\left|\sqrt{8}-1\right|}{2}=\frac{\sqrt{8}-1}{2}\)

26 tháng 8 2019

So sánh:

1) \(2\sqrt{27}\)\(\sqrt{147}\)

+ \(2\sqrt{27}\) = \(6\sqrt{3}\)

+ \(\sqrt{147}\) = \(7\sqrt{3}\)

\(6\sqrt{3}\) < \(7\sqrt{3}\)

Vậy: \(2\sqrt{27}\)< \(\sqrt{147}\)

2) \(2\sqrt{15}\)\(\sqrt{59}\)

+ \(2\sqrt{15}\) = \(\sqrt{60}\)

\(\sqrt{60}\) > \(\sqrt{59}\)

Vậy: \(2\sqrt{15}\) > \(\sqrt{59}\)

3) \(2\sqrt{2}-1\) và 2

\(giống\left(-1\right)\left\{{}\begin{matrix}3-1\\2\sqrt{2}-1\end{matrix}\right.\)

So sánh: 3 và \(2\sqrt{2}\)

+ 3 = \(\sqrt{9}\)

+ \(2\sqrt{2}=\sqrt{8}\)

\(\sqrt{8}\) < \(\sqrt{9}\)

\(\sqrt{8}\) -1 < \(\sqrt{9}\) -1

\(2\sqrt{2}\) - 1 < 3 - 1

Vậy: \(2\sqrt{2}-1< 2\)

4) \(\frac{\sqrt{3}}{2}\) và 1

+ 1 = \(\frac{2}{2}\)

\(\frac{\sqrt{3}}{2}\) < \(\frac{2}{2}\)

Vậy: \(\frac{\sqrt{3}}{2}\) < 1

5) \(\frac{-\sqrt{10}}{2}\)\(-2\sqrt{5}\)

+ \(-2\sqrt{5}\) = \(\frac{-4\sqrt{5}}{2}\) = \(\frac{-\sqrt{80}}{2}\)

\(\frac{-\sqrt{10}}{2}\) > \(\frac{-\sqrt{80}}{2}\)

Vậy: \(\frac{-\sqrt{10}}{2}\) > \(-2\sqrt{5}\)