√21+12√321+123

2, √57−40√257−402

3, 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2018

1) \(\sqrt{21+12\sqrt{3}}=\sqrt{3^2+2.3.2\sqrt{3}+\left(2\sqrt{3}\right)^2}=\sqrt{\left(3+2\sqrt{3}\right)^2}\)

                                                                       \(=\left|3+2\sqrt{3}\right|=3+2\sqrt{3}\)

2) \(\sqrt{57-40\sqrt{2}}=\sqrt{5^2-2.5.4\sqrt{2}+\left(4\sqrt{2}\right)^2}=\sqrt{\left(5-4\sqrt{2}\right)^2}\)

                                                                           \(=\left|5-4\sqrt{2}\right|=4\sqrt{2}-5\)

3) \(\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\left|\sqrt{5}+1\right|+\left|\sqrt{5}-1\right|\)

\(=\sqrt{5}+1+\sqrt{5}-1\)

\(=2\sqrt{5}\)

25 tháng 6 2018

Giải:

1) \(\sqrt{21+12\sqrt{3}}\)

\(=\sqrt{12+9+12\sqrt{3}}\)

\(=\sqrt{12+12\sqrt{3}+9}\)

\(=\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}.3+3^2}\)

\(=\sqrt{\left(2\sqrt{3}+3\right)^2}\)

\(=2\sqrt{3}+3\)

Vậy ...

2) \(\sqrt{57-40\sqrt{2}}\)

\(=\sqrt{32+25-40\sqrt{2}}\)

\(=\sqrt{32-40\sqrt{2}+25}\)

\(=\sqrt{\left(4\sqrt{2}\right)^2-2.4\sqrt{2}.5+5^2}\)

\(=\sqrt{\left(4\sqrt{2}-5\right)^2}\)

\(=4\sqrt{2}-5\)

Vậy ...

3) \(\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\sqrt{5}+1+\sqrt{5}-1\)

\(=2\sqrt{5}\)

Vậy ...

19 tháng 7 2017

\(=-10\)

\(=-6\)

27 tháng 9 2020

Giúp mình với ạ

15 tháng 7 2018

\(a.\sqrt{8-\sqrt{28}}+\sqrt{21+12\sqrt{3}}=\sqrt{7-2\sqrt{7}+1}+\sqrt{12+2.2\sqrt{3}.3+9}=\sqrt{7}-1+2\sqrt{3}+3=2\sqrt{3}+\sqrt{7}+2\) \(b.\sqrt{5+\sqrt{24}}-\sqrt{57-40\sqrt{2}}=\sqrt{3+2.\sqrt{3}.\sqrt{2}+2}-\sqrt{32-2.4\sqrt{2}.5+25}=\sqrt{3}+\sqrt{2}-4\sqrt{2}+5=\sqrt{3}-3\sqrt{2}+5\) \(c.\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}=\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5}+\sqrt{45+2.3\sqrt{5}.2\sqrt{2}+8}=2\sqrt{2}-\sqrt{5}+3\sqrt{5}+2\sqrt{2}=4\sqrt{2}+2\sqrt{5}\)

Bài 1 : \(\sqrt{49-12\sqrt{5}}+\sqrt{49+12\sqrt{5}}\)

\(=\sqrt{45-4\sqrt{45}+4}+\sqrt{45+4\sqrt{45}+4}\)

\(=\sqrt{\left(\sqrt{45}-2\right)^2}+\sqrt{\left(\sqrt{45}+2\right)^2}\)

\(=\sqrt{45}-2+\sqrt{45}+2=2\sqrt{45}\)

Bài 2 : \(\sqrt{29+12\sqrt{5}}+\sqrt{29-12\sqrt{5}}\)

\(=\sqrt{20+6\sqrt{20}+9}+\sqrt{20-6\sqrt{20}+9}\)

\(=\sqrt{\left(\sqrt{20}+3\right)^2}+\sqrt{\left(\sqrt{20}-3\right)^2}\)

\(=\sqrt{20}+3+\sqrt{20}-3=2\sqrt{20}\)

Bài 3 : \(\sqrt{31-12\sqrt{3}}+\sqrt{31+12\sqrt{3}}\)

\(=\sqrt{27-4\sqrt{27}+4}+\sqrt{27+4\sqrt{27}+4}\)

\(=\sqrt{\left(\sqrt{27}-2\right)^2}+\sqrt{\left(\sqrt{27}+2\right)^2}\)

\(=\sqrt{27}-2+\sqrt{27}+2=2\sqrt{27}\)

Chúc bạn học tốt

1 tháng 8 2018

4 , Ta có :

\(\sqrt{39-12\sqrt{3}}-\sqrt{39+12\sqrt{3}}\)

\(=\sqrt{3-2.6.\sqrt{3}+6^2}-\sqrt{3+2.6.\sqrt{3}+6^2}\)

\(=\sqrt{\left(\sqrt{3}-6\right)^2}-\sqrt{\left(\sqrt{3}+6\right)^2}\)

\(=\left|\sqrt{3}-6\right|-\left|\sqrt{3}+6\right|\)

\(=6-\sqrt{3}-\sqrt{3}-6\)

\(=-2\sqrt{3}\)

21 tháng 6 2018

\(1)\) Ta có : 

\(\left(\sqrt{3\sqrt{2}}\right)^4=\left[\left(\sqrt{3\sqrt{2}}\right)^2\right]^2=\left(3\sqrt{2}\right)^2=9.2=18\)

\(\left(\sqrt{2\sqrt{3}}\right)^4=\left[\left(\sqrt{2\sqrt{3}}\right)^2\right]^2=\left(2\sqrt{3}\right)^2=4.3=12\)

Vì \(18>12\) nên \(\left(\sqrt{3\sqrt{2}}\right)^4>\left(\sqrt{2\sqrt{3}}\right)^4\)

\(\Rightarrow\)\(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

Vậy \(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

Chúc bạn học tốt ~ 

31 tháng 8 2017

Bạn xem lại câu 5 xem có sai đề không chứ mình tính mãi không ra

1 tháng 9 2017

Đề câu 5 k sai nhé. Dùng Mode 5 3 vẫn ra.