Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- \(B=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{93.97}\)
\(4.B=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{93.97}\)
\(4.B=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{97}\)
\(4.B=1-\frac{1}{97}\)
\(4.B=\frac{96}{97}\)
\(B=\frac{96}{97}:4\)
\(B=\frac{24}{97}\)
\(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(B=\frac{2}{3×5}+\frac{2}{5×7}+\frac{2}{7×9}+...+\frac{2}{19×21}\)
\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{19}-\frac{1}{21}\)
\(B=\frac{1}{3}-\frac{1}{21}\)
\(B=\frac{2}{7}\)
A=\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+\(\frac{1}{15}\)+...+\(\frac{1}{66}\)
A=\(\frac{1}{1\cdot3}\) +\(\frac{1}{2\cdot3}\) +\(\frac{1}{2\cdot5}\)+...+\(\frac{1}{6\cdot11}\)
A=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{5}+...+\frac{1}{6}-\frac{1}{11}\)
A=\(\frac{1}{1}-\frac{1}{11}\)
=>A=\(\frac{10}{11}\)
B=\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
2B=\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{19\cdot21}\)
2B=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
2B=\(\frac{1}{3}-\frac{1}{21}\)
2B=\(\frac{2}{7}\)
B=\(\frac{2}{7}:2\)
=>B=\(\frac{1}{7}\)
\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(A=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(A=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(A=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(A=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(A=2.\frac{3}{16}\)
\(A=\frac{3}{8}\)
\(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(B=\frac{1}{3}-\frac{1}{21}\)
\(B=\frac{2}{7}\)
\(A=\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{83.85}\)
\(\Rightarrow2A=\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{83.85}\)
\(2A=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{83}-\frac{1}{85}\)
\(2A=\frac{1}{25}-\frac{1}{85}\)
\(2A=\frac{12}{425}\)
\(A=\frac{12}{425}:2\)
\(A=\frac{6}{425}\)
\(C=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(C=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(C=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(C=\frac{1}{3}-\frac{1}{21}\)
\(C=\frac{2}{7}\)
CÂU B LÀM TƯƠNG TỰ NHA
HOK TOT
D =3-32-....-3100
(=)D=3-(32+33+....+3100)
(=)3D=3.3-(33+....+3101)
(=)2D=6-(3101-32)
(=)D=6-(3101-32) :2
B=-2/15-2/35-....-2/399
(=)B=-2/15-(2/35-...-2/399)
(=)B=-2/15-(2/5.7-...-2/19.21)
(=)B=-2/15-(1/5-1/21)
(=)B=-2/15-16/105
(=)B=-2/7
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{11.13}\)
\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\)
\(A=1-\frac{1}{13}\)
\(A=\frac{12}{13}\)
A = 1/3 + 1/15 + 1/35 + 1/63 +.....+ 1/143
= 1/1.3 + 1/3.5 + 1/5.7 + 1/7.9 +.....+1/11.13
= 1/2 . (1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 +...+ 1/11 - 1/13)
= 1/2 . (1 - 1/13)
= 1/2 . 12/13
= 6/13
\(A=\frac{5}{3\cdot5}+\frac{5}{5\cdot7}+\frac{5}{7\cdot9}+......+\frac{5}{19\cdot21}\)
\(A=\frac{5}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+......+\frac{1}{19}-\frac{1}{21}\right)\)
\(A=\frac{5}{2}\left(\frac{1}{3}-\frac{1}{21}\right)\)
còn lại tự tính nha
ok xong r đó
\(A=\frac{5}{15}+\frac{5}{35}+\frac{5}{63}+...+\frac{5}{399}\)
\(A=\frac{5}{3.5}+\frac{5}{5.7}+\frac{5}{7.9}+...+\frac{5}{19.21}\)
\(2A=5\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\right)\)
\(2A=5\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(2A=5\left(\frac{1}{3}-\frac{1}{21}\right)\)
\(2A=5.\frac{2}{7}\)
\(2A=\frac{10}{7}\)
\(\Rightarrow A=\frac{5}{7}\)
\(=\frac{1}{2}\left(1-\frac{1}{399}\right)=\frac{1}{2}.\frac{1}{399}=\frac{1}{798}.\)