Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\)\(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{143}\)
\(=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{11.13}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\)
\(2A=\frac{1}{3}-\frac{1}{13}=\frac{10}{39}\)
\(A=\frac{5}{39}\)
Câu còn lại cx dựa như vậy nhé bn !
Chúc bn hc tốt <3
A=1/1.3 + 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 + 1/11.13 + 1/13.15
A=1/1 - 1/3 +1/3 - 1/5 +1/5 -1/7+......+1/13 - 1/15
A=1 - 1/15
A=1/14
a)\(A=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{195}=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{2}{15}\)
b)\(M=1+3+3^2+...+3^{25}=\frac{3^{26}-1}{3-1}=\frac{3^{26}-1}{2}<\frac{3^{26}}{2}\Rightarrow M
Gọi dãy là A ta có :
A = 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 + 1/11.13
A = 1/2 . ( 2/3.5 + 2/5.7 + 2/7.9 + 2/9.11 + 2/11.13 )
A = 1/2 . ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + 1/11 - 1/13 )
A = 1/2 . ( 1/3 - 1/13 )
A = 1/2 . 10/39
A = 5/39
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
=\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
=\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
=\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)
=\(\frac{1}{2}.\frac{10}{39}\)
=\(\frac{5}{39}\)
1/15+1/35+1/63+1/99+1/143
=1/2x(1/15+1/35+1/63+1/99+1/143)
=1/2x(2/3x5+2/5x7+2/7x9+2/9x11+2/11x13)
=1/2x(1/3-1/5+1/7-1/9+1/9-1/11+1/11-1/13)
=1/2x(1/3-1/13)
=1/2x10/39
=5/39
1/15 + 1/35 + 1/63 + 1/99 + 1/143
đặt A = 1/15 + 1/35 + 1/63 + 1/99 + 1/143
A = 1/3X5 + 1/5X7 + 1/7X9 + 1/9X11 + 1/11X13
A x 2 = 2 x ( 1/3x5 + 1/5x7 + 1/7x9 + 1/9x11 + 1/11x13 )
A x 2 = 2/3x5 + 2/5x7 + 2/7x9 + 2/9x11 + 2/11x13
A x 2 = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + 1/11 - 1/13
A x 2 = 1/3 - 1/13
A x 2 = 13/39 - 3/39
A x 2 = 10/39
A =10/39 : 2
A = 5/39
2S=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\)
=\(1-\frac{1}{15}=\frac{14}{15}\)
\(\Rightarrow S=\frac{7}{15}\)
a. Ta có:A= 1/1.3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15
A=1/2(1/1.3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15)
A=1/2(1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13+1/13-1/15)
A=2(1-1/15)
A=1/2.14/15
A=7/15
Đặt \(A=1\frac{7}{15}-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}-\frac{1}{143}-\frac{1}{195}\)
\(\Rightarrow A=\frac{22}{15}-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\right)\)
Đặt \(B=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(\Rightarrow B=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}+\frac{1}{13\cdot15}\)
\(\Rightarrow2B=2\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}+\frac{1}{13\cdot15}\right)\)
\(\Rightarrow2B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{13\cdot15}\)
\(\Rightarrow2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(\Rightarrow2B=1-\frac{1}{15}\)
\(\Rightarrow2B=\frac{14}{15}\)
\(\Rightarrow B=\frac{14}{15}:2\Rightarrow B=\frac{7}{15}\)
\(\Rightarrow A=\frac{22}{15}-\frac{7}{15}\Rightarrow A=\frac{15}{15}=1\)
B = 1/3*5 + 1/5*7 + 1/7*9 + 1/9*11 + 1/11*13
= 1/2 * ( 2/3*5 + 2/5*7 + 2/7*9 + 2/9*11 + 2/11*13)
= 1/2 * ( 1/3 - 1/5 + 1/5 -1/7 + ...+ 1/11 - 1/13)
= 1/2 * ( 1/3 - 1/11)
= 1/2 * 8/33
= 4/33
\(B=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
\(B=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(B=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(B=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(B=\frac{1}{2}.\frac{12}{39}\)
\(B=\frac{2}{13}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{11.13}\)
\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\)
\(A=1-\frac{1}{13}\)
\(A=\frac{12}{13}\)
A = 1/3 + 1/15 + 1/35 + 1/63 +.....+ 1/143
= 1/1.3 + 1/3.5 + 1/5.7 + 1/7.9 +.....+1/11.13
= 1/2 . (1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 +...+ 1/11 - 1/13)
= 1/2 . (1 - 1/13)
= 1/2 . 12/13
= 6/13