Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)
\(=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{99x100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3_{ }}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
= 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 +....+1 /99.100
= 1/1 - 1/2 + 1/2 -1/3 + .... + 1/99 - 1/100
= 1/1 - 1/100
= 100/100 - 1/100
= 99/100
1/2+1/6+1/12+1/20+...+1/9900
=1/1.2+1/2.3+1/3.4+...+1/99.100
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100=99/100
1/2+1/6+1/12+...+1/9900
=1/(1*2)+1/(2*3)+1/(3*4)+...+1/(99*100)
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=99/100
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(B=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)\(=\left(1-\frac{1}{100}\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+...\left(\frac{1}{99}-\frac{1}{99}\right)=\left(\frac{100}{100}-\frac{1}{100}\right)+0+...+0=\frac{99}{100}\)Vậy B=99/100
MK k chắc nữa
\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}\)
\(=\frac{100}{100}-\frac{1}{100}\)
\(=\frac{100-1}{100}=\frac{99}{100}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(A=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(A=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=1+2\left(\frac{1}{2}-\frac{1}{100}\right)=1+2.\frac{49}{100}=1+\frac{49}{50}\)
\(A=\frac{99}{50}\)
Vậy \(A=\frac{99}{50}\)
Công thức : \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{100-1}{100}=\frac{99}{100}\)
Ta có:
1/2+1/6+...+1/9900
=1/1.2+1/2.3...+1/99.100
=1-1/2+1/2-1/3+1/3-...+1/99-1/100
=1-1/100
=99/100
Nhớ k mk nhé!!!!!!!!!!!