K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

1)1-2+3-4+5-6+...+1019-1020 (có 1020 số hạng)

= (1-2+3-4) + (5-6+7-8) +.....+(1017-1018+1019-1020) (có 225 nhóm)

= -2 +(-2) +...........+(-2) ( có 225 số hạng)

= -2.225

= -450

5)1+2-3-4+...+97+98-99-100

= (1+2-3-4) +..........+(97+98-99-100)

= (-4) +..........(-4)

= (-4). 25

= -100

26 tháng 2 2020

2)(-1)+2+(-3)+4+...+(-99)+100

= -1 +2 -3+4+.....-99+100

= (2-1) +(4-3) +....+(100-99) ( Có 50 cặp )

= 1+ 1+...+1 ( Có 50 số )

=1.50

=50

4) Nếu đổi +48 thành -48 thì mik làm đc

2-4+6-8+...-48-50

= 2+ (6-4) + (10-8) + ...+(50-48)

=2+2+2+....+2

=2.13

=26

\(A=\frac{2019^{2020}+1}{2019^{2021}+1}\)và \(B=\frac{2019^{2018}+1}{2019^{2019}+1}\)

Xét \(A=\frac{2019^{2020}+1}{2019^{2021}+1}\Rightarrow2019A=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2019}{2019^{2021}+1}\)

Xét \(B=\frac{2019^{2018}+1}{2019^{2019}+1}\Rightarrow2019B=\frac{2019^{2019}+2019}{2019^{2019}+1}=1+\frac{2018}{2019^{2019}+1}\)

Vì \(1+\frac{2018}{2019^{2021}+1}< 1+\frac{2018}{2019^{2019}+1}\Rightarrow\frac{2019^{2020}+1}{2019^{2021}+1}< \frac{2018^{2019}+1}{2019^{2019}+1}\)

\(\Rightarrow A< B\)

Ta có:

\(A=\frac{2019^{2020}+1}{2019^{2021}+1}\)

\(\Rightarrow2019A=\frac{2019^{2021}+2019}{2019^{2021}+1}\)

\(\Rightarrow2019A=1+\frac{2019}{2019^{2021}+1}\)

\(\Rightarrow A=1+\frac{2019}{2019^{2021}+1}:2019\)

Ta lại có:

\(B=\frac{2019^{2018}+1}{2019^{2019}+1}\)

\(\Rightarrow2019B=\frac{2019^{2019}+2019}{2019^{2019}+1}\)

\(\Rightarrow2019B=1+\frac{2019}{2019^{2019}+1}\)

\(\Rightarrow B=1+\frac{2019}{2019^{2019}+1}:2019\)

Do \(2019^{2021}+1>2019^{2019}+1\)

\(\Rightarrow\frac{2019}{2019^{2021}+1}< \frac{2019}{2019^{2019}+1}\)

\(\Rightarrow1+\frac{2019}{2019^{2021}+1}:2019< 1+\frac{2019}{2019^{2019}+1}:2019\)

\(\Rightarrow A< B\)

Vậy \(A< B.\)

4 tháng 6 2021

khó quá bẹn gì đấy ơi

18 tháng 9 2023

B = 22021  - 22020 - 22019 -...- 2 -1

B = 22021 - (22020 + 22019 +...+2 +1)

Đặt         C =              22020 + 22019 +...+ 2 + 1

             2C = 22021 + 22020 + 22019+....+ 2 + 1

       2C - C = 22021 - 1

               C = 22021 - 1

B = 22021 - (22021 -1)

B = 22021 - 22021 + 1

B  = 1

23 tháng 1 2019

\(S=1+3+3^2+3^3+...+3^{2019}\)

\(\Rightarrow3S=3+3^2+3^3+3^4+...+3^{2020}\)

\(\Rightarrow3S-S=2^{2020}-1\)

\(\Rightarrow S=\frac{2^{2020}-1}{2}\)

23 tháng 1 2019

A = 1+3+32+33+......+32019

3A = 3 + 32+33+......+32019 + 32020

2A = (3 + 32+33+......+32019 + 32020) - (1+3+32+33+......+32019)

2A = 32020-1

=> A = 32020-1/2

Vậy...