K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2024

Đặt \(A=1\cdot2+2\cdot3+3\cdot4+...+98\cdot99\) 

\(3A=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+98\cdot99\cdot3\)

\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+98\cdot99\cdot\left(100-97\right)\)

\(3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+98\cdot99\cdot100-97\cdot98\cdot99\)

\(3A=\left(1\cdot2\cdot3-1\cdot2\cdot3\right)+\left(2\cdot3\cdot4-2\cdot3\cdot4\right)+\left(3\cdot4\cdot5-3\cdot4\cdot5\right)+...+\left(97\cdot98\cdot99-97\cdot98\cdot99\right)+98\cdot99\cdot100\)

\(3A=98\cdot99\cdot100\)

\(A=\dfrac{98\cdot99\cdot100}{3}\)

\(A=323400\)

Vậy \(A=323400\)

28 tháng 6 2024

323400

 

12 tháng 9 2015

3A= 1.2.3+2.3.3+3.4.3+...........+2010.2011.3

3A=1.2.3+2.3.(4-1)+3.4.(5-2)+.........+2010.2011.(2012-2009)

=>3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+2010.2011.2012-2009.2010.2011

=>3A=2010.2011.2012

=>3A=3.670.2011.2012

=>A=670.2011.2012

=>A= .......lấy máy tính mà tính

7 tháng 7 2018

Ta có : A = 1/1.2 + 1/2.3 + .... + 1/98.99 + 1/99.100 .

=>       A = 1 - 1/2 + 1/2 - 1/3 + .... + 1/98 - 1/99 + 1/99 - 1/100 .

=>       A = 1 - 1/100 .

=>       A = 99/100 .

7 tháng 7 2018

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A=1-\frac{1}{100}\)

\(\Rightarrow A=\frac{99}{100}\)

9 tháng 6 2017

Đặt A = 1.2+2.3+3.4+....+98+99

ð     3a = 1.2.3-1.2.3+2.3.4+...+98.99.100

ð     3a=98.99.100

ð     A=98.99.100/3

ð     A=323400

9 tháng 6 2017

Đặt A = 1.2 + 2.3 + 3.4 + ...... + 98.99

=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ....... + 98.99.100

=> 3A = 98 .99.100

=> A = 98 .99.100/3 

=> A = 323400 

30 tháng 1 2023

 Tham khảo:

A=1.2+2.3+3.4+...+2013.2014

3A = 1.2.3 + 2.3.3 + 3.4.3 +...+ 2013.2014.3

Mà: 1.2.3 = 1.2.3

2.3.3 = 2.3.4 - 2.3.1

3.4.3 = 3.4.5 - 3.4.2

2012.2013.3  = 2012.2013.2014 - 2012.2013.2011

2013.2014.3 = 2013.2014.2015 - 2013.2014.2012

=> 3S = 2013.2014.2015

=> A = 2013.2014.2015 / 3 = 2723058910

 

29 tháng 8 2021

E = 1.2+2.3+3.4+......+99.100
Gấp E lên 3 lần ta có:
E . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
E . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
E . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100                                                                                       E . 3 = 99.100.101
E = 99.100.101 : 3
E = 33.100.101
E = 333 300

k mik nha

E = 1.2 + 2.3 + 3.4 + ... + 99.100

=> 3E = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3

=> 3E = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) +...+ 99.100.(101-98)

=> 3E = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100

=> 3E = 99.100.101

=> E = 333300

8 tháng 3 2017

\(S=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+....+\frac{3}{2015.2016}\)

\(\Rightarrow\frac{1}{3}.S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2015.2016}\)

\(\Rightarrow\frac{1}{3}.S=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+......+\left(\frac{1}{2015}-\frac{1}{2016}\right)\)

\(\Rightarrow\frac{1}{3}.S=\frac{1}{1}-\frac{1}{2016}\)

\(\Rightarrow\frac{1}{3}.S=\frac{2015}{2016}\)

\(\Rightarrow S=\frac{2015}{672}\)

Vậy: \(\Rightarrow S=\frac{2015}{672}\)

Bạn giải giúp mk câu mk đăng tầm 5 phút nha!

8 tháng 3 2017

đơn giản

29 tháng 7 2018

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{!}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

\(C=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+....+\frac{1}{1024}+\frac{1}{2048}\)

\(\Rightarrow\)\(2C=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{512}+\frac{1}{1024}\)

\(\Rightarrow\)\(2C-C=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\right)\)

\(\Leftrightarrow\)\(C=1-\frac{1}{2048}=\frac{2047}{2048}\)

29 tháng 7 2018

Câu A bạn quên 1/4.5 kìa , với câu D đâu >>>
 

1 tháng 8 2017

1/1.2+1/2.3+1/3.4+......+1/2003.2004=1/1-1/2+1/2-1/3+1/3-1/4+......+1/2003-1/2004

                                                          =1/1-1/2004

                                                          =2003/2004

1 tháng 8 2017

1/1.2+1/2.3+1/3.4+.......1/2003.2004

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\)

\(=1-\frac{1}{2004}\)

\(=\frac{2003}{2004}\)