Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=5+5^2+5^3+....+5^{199}+5^{200}\)
\(\Leftrightarrow5A=5\left(5+5^2+5^3+....+5^{199}+5^{200}\right)\)
\(\Leftrightarrow5A=5^2+5^3+5^4+....+5^{200}+5^{201}\)
\(\Leftrightarrow5A-A=\left(5^2+5^3+5^4+....+5^{200}+5^{201}\right)-\left(5+5^2+5^3+....+5^{199}+5^{200}\right)\)
\(\Leftrightarrow4A=5^{201}-5\)
\(\Leftrightarrow A=\frac{5^{201}-5}{4}\)
a: =(-1)+(-1)+...+(-1)=-1011
b: =(-5)+(-5)+...+(-5)=-175
Đăt A = \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+......+\frac{1}{7^{100}}\)
\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.....+\frac{1}{7^{100}}\)
\(\Rightarrow7A-A=1-\frac{1}{7^{100}}\)
\(\Rightarrow6A=1-\frac{1}{7^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{3}{4}+...+\frac{1}{9}-\frac{1}{10}\)
= \(1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)
= \(1-\frac{1}{10}\)
=\(\frac{9}{10}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
=\(1-\frac{1}{11}\)
= \(\frac{10}{11}\)
c) đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}\)
\(\frac{1}{3}A\)=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{2}{3}A\)=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\frac{2}{3}A\)=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)
\(\frac{2}{3}A\)=\(\frac{10}{11}\)
A= \(\frac{10}{11}:\frac{2}{3}\)
A= \(\frac{10}{11}.\frac{3}{2}\)=\(\frac{15}{11}\)
d) giả tương tự câu c kết quả \(\frac{25}{11}\)
tổng đặc biệt đó bạn
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(1-\frac{1}{10}=\frac{9}{10}\)
những câu sau cũng áp dụng như vậy nhé
\(\left(\dfrac{5}{7}-\dfrac{7}{7}\right)-\left[0,2-\left(-\dfrac{2}{7}-\dfrac{1}{10}\right)\right]\)
=\(-\dfrac{2}{7}-\left[\dfrac{1}{5}+\dfrac{2}{7}+\dfrac{1}{10}\right]\)
=\(-\dfrac{2}{7}-\dfrac{1}{5}-\dfrac{2}{7}-\dfrac{1}{10}\)
=\(\left(-\dfrac{2}{7}-\dfrac{2}{7}\right)-\left(\dfrac{1}{5}+\dfrac{1}{10}\right)\)
=\(-\dfrac{4}{7}-\left(\dfrac{2}{10}+\dfrac{1}{10}\right)\)
=\(-\dfrac{4}{7}-\dfrac{3}{10}\)
=\(-\dfrac{40}{70}-\dfrac{21}{70}\)
=\(-\dfrac{61}{70}\)
(3 - \(\dfrac{1}{4}\) + \(\dfrac{2}{3}\)) - (5 - \(\dfrac{1}{3}\) - \(\dfrac{5}{6}\)) - (6 - \(\dfrac{7}{4}\) - \(\dfrac{3}{2}\))
= 3 - \(\dfrac{1}{4}\) + \(\dfrac{2}{3}\) - 5 + \(\dfrac{1}{3}\) + \(\dfrac{5}{6}\) - 6 + \(\dfrac{7}{4}\) + \(\dfrac{3}{2}\)
= (3 - 5 - 6) + ( \(\dfrac{7}{4}\) - \(\dfrac{1}{4}\)) + (\(\dfrac{2}{3}\) + \(\dfrac{1}{3}\)) + \(\dfrac{3}{2}\) + \(\dfrac{5}{6}\)
= - 8 + \(\dfrac{3}{2}\) + 1 + \(\dfrac{3}{2}\) + \(\dfrac{5}{6}\)
= (- 8 + 1) + (\(\dfrac{3}{2}\) + \(\dfrac{3}{2}\)) + \(\dfrac{5}{6}\)
= -7 + 3 + \(\dfrac{5}{6}\)
= - 4 + \(\dfrac{5}{6}\)
= \(\dfrac{-19}{6}\)
13095579
dễ mà