Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt đã cho tương đương: 2x + 2.2x + 4.2x = 3x + 3.3x + 9.3x
\(\Leftrightarrow\) 7.2x=13.3x
\(\Leftrightarrow\) 2x = 13/7 . 3x
log hai vế của phương trình với cơ số 2, ta có x= log2(13/7) + xlog23
vậy x= \(\frac{log_2\frac{13}{7}}{1-log_23}\)
Lời giải:
Ta có:
\(2^{x}+2^{x-1}+2^{x-2}=3^x+3^{x-1}+3^{x-2}\)
\(\Leftrightarrow 2^{x-2}(2^2+2+1)=3^{x-2}(3^2+3+1)\)
\(\Leftrightarrow 2^{x-2}.7=3^{x-2}.13\)
\(\Leftrightarrow \frac{2^{x-2}}{3^{x-2}}=\frac{13}{7}\)
\(\Leftrightarrow \left(\frac{2}{3}\right)^{x-2}=\frac{13}{7}\)
\(\Leftrightarrow x-2=\log_{\frac{2}{3}}\frac{13}{7}\)
\(\Leftrightarrow x=2+\log_{\frac{2}{3}}\frac{13}{7}=\log_{\frac{2}{3}}\frac{4}{9}+\log_{\frac{2}{3}}\frac{13}{7}=\log_{\frac{2}{3}}\frac{52}{63}\)
Vậy \(x=\log_{\frac{2}{3}}\frac{52}{63}\)
Câu 2)
Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2\frac{\ln x}{x}dx\\ v=\frac{x^3}{3}\end{matrix}\right.\Rightarrow I=\frac{x^3}{3}\ln ^2x-\frac{2}{3}\int x^2\ln xdx\)
Đặt \(\left\{\begin{matrix} k=\ln x\\ dt=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dk=\frac{dx}{x}\\ t=\frac{x^3}{3}\end{matrix}\right.\Rightarrow \int x^2\ln xdx=\frac{x^3\ln x}{3}-\int \frac{x^2}{3}dx=\frac{x^3\ln x}{3}-\frac{x^3}{9}+c\)
Do đó \(I=\frac{x^3\ln^2x}{3}-\frac{2}{9}x^3\ln x+\frac{2}{27}x^3+c\)
Câu 3:
\(I=\int\frac{2}{\cos 2x-7}dx=-\int\frac{2}{2\sin^2x+6}dx=-\int\frac{dx}{\sin^2x+3}\)
Đặt \(t=\tan\frac{x}{2}\Rightarrow \left\{\begin{matrix} \sin x=\frac{2t}{t^2+1}\\ dx=\frac{2dt}{t^2+1}\end{matrix}\right.\)
\(\Rightarrow I=-\int \frac{2dt}{(t^2+1)\left ( \frac{4t^2}{(t^2+1)^2}+3 \right )}=-\int\frac{2(t^2+1)dt}{3t^4+10t^2+3}=-\int \frac{2d\left ( t-\frac{1}{t} \right )}{3\left ( t-\frac{1}{t} \right )^2+16}=\int\frac{2dk}{3k^2+16}\)
Đặt \(k=\frac{4}{\sqrt{3}}\tan v\). Đến đây dễ dàng suy ra \(I=\frac{-1}{2\sqrt{3}}v+c\)
Cần tìm m để hàm số đồng biến trên khoảng nào bạn? Hay đồng biến trên R? Cần có 1 miền cụ thể
đó là bằng 1*10^24
mình ko chắc chắn lắm
\(=\text{1e+24}\)