Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu $x+2>2x+1$ thì $2^{x+2}>2^{2x+1},3^{x+2}>3^{2x+1}$ nên VT>VP.
Nếu $x+2<2x+1$ thì $2^{x+2}<2^{2x+1},3^{x+2}<3^{2x+1}$ nên VT<VP.
Vậy x+2=2x+1 hay x=1
Phương trình đã cho tương đương với phương trình
\(3^{x+2}-3^{x+2}=3^{2x+1}-2^{2x+1}\)
Dễ thấy \(x=1\) là nghiệm của phương trình
Nếu \(x>1\) thì \(x+2<2x+1\)
Do đó
\(3^{x+2}<3^{2x+1};3^{2x+1}>2^{x+2}\)
Hay vế trái <0< Vế phải, phương trình vô nghiệm
Tương tự, nếu x<1 thì phương trình cũng vô nghiệm
Vạy x=1 là nghiệm duy nhất của phương trình
Biến đổi phương trình về dạng :
\(\frac{\left(\frac{5}{4}\right)^x+1}{\left(\frac{1}{4}\right)^x+\left(\frac{2}{4}\right)^x+\left(\frac{3}{4}\right)^x}=\frac{3}{2}\)
Nhận thấy \(x=1\) là nghiệm
Nếu \(x>1\) thì \(\left(\frac{5}{4}\right)^x+1>\frac{5}{4}+1=\frac{9}{4}\) và \(\left(\frac{1}{4}\right)^x+\left(\frac{2}{4}\right)^x+\left(\frac{3}{4}\right)^x<\frac{1}{4}+\frac{2}{4}+\frac{3}{4}=\frac{6}{4}\)
Suy ra vế trái >\(\frac{3}{2}\)= vế phải, phương trình vô nghiệm. Tương tự khi x<1.
Đáp số : x=1
Lấy Logarit cơ số 3 hai vế, ta có phương trình tương đương :
\(\log_3\left(3^x.2^{x^2}\right)=\log_33^x+\log_32^{x^2}=0\)
\(\Leftrightarrow x+x^2\log32=0\)
Do đó phương trình có 2 nghiệm là \(x=0;x=\frac{-1}{\log_33}=-\log_33\)
Lấy logarit cơ số 10 hai vế ta có :
\(lg2^{x+2}+lg3^3=lg4^x+lg5^{x-1}\)
\(\Leftrightarrow\left(x+2\right)lg2+xlg3=xlg4+\left(x-1\right)lg5\)
\(\Leftrightarrow x\left(lg4+lg5-lg3-lg2\right)=2lg2+lg5\)
\(\Leftrightarrow x.lg\frac{4.5}{3.2}=lg\left(2^2.5\right)\)
\(\Leftrightarrow x=\frac{lg20}{lg\frac{10}{3}}\)
Vậy nghiệm của phương trình là \(x=\frac{lg20}{lg\frac{10}{3}}\)
Đặt \(f\left(x\right)=\left(\frac{1}{6}\right)^x+2\left(\frac{1}{3}\right)^x+3\left(\frac{1}{2}\right)^x\)
Nhận thấy f(2) = 1. Mặt khác f(x) là tổng của các hàm số nghịch biến trên R. Do đó f(x) cũng là hàm nghịch biến. Từ đó ta có :
\(f\left(x\right)<1=f\left(2\right)\Leftrightarrow x>2\)
Vậy tập nghiệm của bất phương trình là
\(D=\left(2;+\infty\right)\)
Lời giải:
Ta có:
\(2^{x}+2^{x-1}+2^{x-2}=3^x+3^{x-1}+3^{x-2}\)
\(\Leftrightarrow 2^{x-2}(2^2+2+1)=3^{x-2}(3^2+3+1)\)
\(\Leftrightarrow 2^{x-2}.7=3^{x-2}.13\)
\(\Leftrightarrow \frac{2^{x-2}}{3^{x-2}}=\frac{13}{7}\)
\(\Leftrightarrow \left(\frac{2}{3}\right)^{x-2}=\frac{13}{7}\)
\(\Leftrightarrow x-2=\log_{\frac{2}{3}}\frac{13}{7}\)
\(\Leftrightarrow x=2+\log_{\frac{2}{3}}\frac{13}{7}=\log_{\frac{2}{3}}\frac{4}{9}+\log_{\frac{2}{3}}\frac{13}{7}=\log_{\frac{2}{3}}\frac{52}{63}\)
Vậy \(x=\log_{\frac{2}{3}}\frac{52}{63}\)
Đáp án x=log(2/3)(52/63)