Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^2+4x+4=x^2+2\cdot2\cdot x+2^2=\left(x+2\right)^2\)
b)\(9x^2+42x+49=\left(3x\right)^2+2\cdot3x\cdot7+7^2=\left(3x+7\right)^2\)
c)\(\dfrac{1}{9}-\dfrac{2}{3}y^4+y^8=\left(\dfrac{1}{3}\right)^2-2\cdot\dfrac{1}{3}\cdot y^4+\left(y^4\right)^2=\left(y^4-\dfrac{1}{3}\right)^2\)
a) \(x^2+2.2x+2^2\)
\(=\left(x+2\right)^2\)
b)\(\left(3x\right)^2+2.3.7x+7^2\)
\(=\left(3x+7\right)^2\)
c) \(\left(\dfrac{1}{3}\right)^2-2.\dfrac{1}{3}.y^4+\left(y^4\right)^2\)
\(=\left(\dfrac{1}{3}-y^4\right)^2\)
\(x^2+6x+9=\left(x+3\right)^2\)
--
\(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)
--
\(x^3+12x^2+48x+64=\left(x+4\right)^3\)
1) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
\(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)
\(=\dfrac{2x^2+50}{x^2+25}\)
\(=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)
2) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3+3^3-54-x^3\)
\(=27-54=-27\)
3) \(\left(2x+y\right)^2-\left(y+3x\right)^2\)
\(=4x^2+4xy+y^2-y^2-6xy-9x^2\)
\(=-5x^2-2xy\)
4) \(\left(2x+1\right)^3-\left(2x-1\right)^3-24x^2\)
\(=8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-24x^2\)
\(=2\)
1) \(\left(3x-2\right)^2=9x^2-12x+4\)
\(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2=\dfrac{1}{4}x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\)
\(\left(a+b\sqrt{3}\right)^2=a^2+2\sqrt{3}ab+3b^2\)
2) \(4a^2+4a+1=\left(2a+1\right)^2\)
\(9x^2-6x+1=\left(3x-1\right)^2\)
\(\dfrac{1}{4}x^2-\dfrac{1}{3}xy+\dfrac{1}{9}y^2=\left(\dfrac{1}{2}x-\dfrac{1}{3}y\right)^2\)
a) x2 + 2x + 1 = x2 + 2.x.1+ 12 = ( x + 1)2
b) 9x2 + y2 + 6xy = (3x)2 + 2.3.x.y + y2 = (3x + y)2
c) 25a2 + 4b2 – 20ab = (5a)2 – 2.5.a.2b. + (2b)2 = (5a – 2b)2
Hoặc 25a2 + 4b2 – 20ab = (2b)2 – 2.2b.5a. + (5a)2 = (2b – 5a)2
d) x2 – x + \(\dfrac{1}{4}\) = x2 – 2.x. \(\dfrac{1}{2}\) + ( \(\dfrac{1}{2}\))22 = ( x - \(\dfrac{1}{2}\) )2
Hoặc x2 – x + \(\dfrac{1}{4}\) = \(\dfrac{1}{4}\) - x + x2 = (\(\dfrac{1}{2}\))2 – 2. \(\dfrac{1}{2}\).x + x2 = (\(\dfrac{1}{2}\) - x)2
a) x2 + 2x + 1 = x2+ 2 . x . 1 + 12
= (x + 1)2
b) 9x2 + y2+ 6xy = (3x)2 + 2 . 3 . x . y + y2 = (3x + y)2
c) 25a2 + 4b2– 20ab = (5a)2 – 2 . 5a . 2b + (2b)2 = (5a – 2b)2
Hoặc 25a2 + 4b2 – 20ab = (2b)2 – 2 . 2b . 5a + (5a)2 = (2b – 5a)2
d) x2 – x + 1414 = x2 – 2 . x . 1212 + (12)2(12)2= (x−12)2(x−12)2
Hoặc x2 – x + 1414 = 1414 - x + x2 = (12)2(12)2 - 2 . 1212 . x + x2 = (12−x)2
a) x2+6x+9=x2+2.x.3+32=(x+3)2
b) x2+x+\(\dfrac{1}{4}\)=x2+2.x.\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)=(x+\(\dfrac{1}{2}\))2
c) 2xy2+x2y4+1=(xy2)2+2.xy2+1=(xy2+1)2
a) x2 +4x+4 = ( x + 2 )2
b) 16x2 - 8xy + y2 = ( 4x - y )2
c)9a2 +16b2 - 24ab = ( 3a - 4y ) 2
d) x2 - x + \(\dfrac{1}{4}\)= ( x - \(\dfrac{1}{2}\))2
e) y2 + \(\dfrac{1}{2}y\) + \(\dfrac{1}{16}\) = ( y + \(\dfrac{1}{4}\))2
a \(x^2-6x+9=x^2-2.3.x+3^2=\left(x-3\right)^2\)
b \(4y^2+y+\frac{1}{16}=\left(2y\right)^2+2.2y.\frac{1}{4}+\left(\frac{1}{4}\right)^2=\left(2y+\frac{1}{4}\right)^2\)
a) \(\frac{1}{9}x^4-2x^2y+9y^2=\left(\frac{1}{3}\right)^2\left(x^2\right)^2-2x^2y+\left(3y\right)^2\)
\(=\left(\frac{1}{3}x^2\right)^2-2\frac{1}{3}x^23y+\left(3y\right)^2\)
\(=\left(\frac{1}{3}x^2-3y\right)^2\)
b) \(25x^2-20xy+4y^2=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\)
\(=\left(5x-2y\right)^2\)
\(\frac{1}{9}x^4-2x^2y+9y^2\)
\(=\left(\frac{1}{3}x^2\right)^2-2\times\frac{1}{3}x^2\times3y+\left(3y\right)^2\)
\(=\left(\frac{1}{3}x^2-3y\right)^2\)
\(25x^2-20xy+4y^2\)
\(=\left(5x\right)^2-2\times5x\times2y+\left(2y\right)^2\)
\(=\left(5x-2y\right)^2\)
a , \(16x^2+8x+1=\left(4x\right)^2+2.4x.1+1^2=\left(4x+1\right)^2\)
b , \(x^2-x+\dfrac{1}{4}=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(x-\dfrac{1}{2}\right)^2\)
a,(4x+1)2 e,\(\left(\dfrac{3}{2}x-\dfrac{2}{5}\right)^2\)
b,(x-\(\dfrac{1}{2}\))2 g,\(\left(xy+1\right)^2\)
c,(\(x+\dfrac{3}{2}\))2 h,\(\left(x+5\right)^2\)
d,\(\left(x-\dfrac{5}{4}\right)^2\) i,\(-\left(x-6\right)^2\)
k,\(-\left(2x+3\right)^2\)
b,\(\dfrac{4}{9}x^2+4x+9=\left(\dfrac{2}{3}x\right)^2+2.\dfrac{2}{3}x.3+3^2=\left(\dfrac{2}{3}x+3\right)^2\)
c, \(x^3+9x^2+27x+27=x^3+3.x^2.3+3.x.3^2+3^3=\left(x+3\right)^3\)
d, \(\dfrac{1}{8}-\dfrac{3}{4}x+\dfrac{3}{2}x^2-x^3=\left(\dfrac{1}{2}\right)^3-3.\left(\dfrac{1}{2}\right)^2.x+3.\dfrac{1}{2}.x^2-x^3=\left(\dfrac{1}{2}-x\right)^3\)
TK MIK