Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
200g=0,2kg
các lực tác dụng lên vật khi ở trên mặt phẳng nghiêng
\(\overrightarrow{P}+\overrightarrow{N}=m.\overrightarrow{a}\)
chiếu lên trục Ox có phương song song với mặt phẳng nghiêng, chiều dương cùng chiều chuyển động
P.sin\(\alpha\)=m.a\(\Rightarrow\)a=5m/s2
vận tốc vật khi xuống tới chân dốc
v2-v02=2as\(\Rightarrow\)v=\(4\sqrt{5}\)m/s
khi xuống chân dốc trượt trên mặt phẳng ngang xuất hiện ma sát
các lực tác dụng lên vật lúc này
\(\overrightarrow{P}+\overrightarrow{N}+\overrightarrow{F_{ms}}=m.\overrightarrow{a'}\)
chiếu lên trục Ox có phương nằm ngang chiều dương cùng chiều chuyển động của vật
-Fms=m.a'\(\Rightarrow-\mu.N=m.a'\) (1)
chiếu lên trục Oy có phương thẳng đứng chiều dương hướng lên trên
N=P=m.g (2)
từ (1),(2)\(\Rightarrow\)a'=-2m/s2
thời gian vật chuyển động trên mặt phẳng đến khi dừng lại là (v1=0)
t=\(\dfrac{v_1-v}{a'}\)=\(2\sqrt{5}s\)
Giải theo cách dùng định luật bảo toàn nhé.
Chọn mốc thế năng tại chân mặt phẳng nghiêng.
Độ cao của mặt phẳng nghiêng là: \(h=L\sin30^0=5m\)
Lực ma sát tác dụng lên vật: \(F_{ms}=\mu.N=\mu.mg\cos30^0=\dfrac{\sqrt 3}{2}m\)
Cơ năng khi vật ở đỉnh mặt phẳng nghiêng là: \(W_1=m.g.h=50m\)
Cơ năng khi vật ở chân mặt phẳng nghiêng: \(W_2=\dfrac{1}{2}mv^2\)
Công của ma sát là: \(A_{ms}=F_{ms}L=5\sqrt 3 m\)
Độ giảm cơ năng bằng công của lực ma sát
\(\Rightarrow W_1-W_2=A_{ms}\)
\(\Rightarrow 50m-\dfrac{1}{2}mv^2=5\sqrt 3m\)
\(\Rightarrow 50-\dfrac{1}{2}v^2=5\sqrt 3\)
Tìm tiếp để ra v nhé
\(\left\{{}\begin{matrix}Ox:mg\sin\alpha-F_{ms}=m.a\\Oy:N=mg\cos\alpha\end{matrix}\right.\Rightarrow mg\sin\alpha-\mu mg\cos\alpha=ma\)
\(\Rightarrow a=g\sin\alpha-\mu g\cos\alpha=...\left(m/s^2\right)\)
+ Theo công thức liên hệ a;v; S trong chuyển động thẳng biến đổi đều ta có:
\(F_{ms}=\mu N=\mu.P.cos\alpha\)
\(\Leftrightarrow\mu=\dfrac{F_{ms}}{P.cos\alpha}=\dfrac{0,3P}{P.cos30^o}=\dfrac{\sqrt{3}}{5}\)
\(a=g\left(sin\alpha-\mu cos\alpha\right)=2\left(m\backslash s^2\right)\)
\(v^2-v_o^2=2as\)
\(\Leftrightarrow v=\sqrt{2as+v_o^2}=1\left(m\backslash s\right)\)
theo định luật II niu tơn trên mặt phẳng nghiêng AB
\(\overrightarrow{F_{ms}}+\overrightarrow{N}+\overrightarrow{P}=m.\overrightarrow{a}\) (1)
chiếu (1) lên trục Ox phương song song với mặt phẳng nằm nghiêng chiều dương cùng chiều chuyển động
\(sin\alpha.P-\mu.N=m.a\) (2)
chiếu (1) lên trục Oy phương vuông gốc với mặt phẳng, chiều dương hướng lên trên
N=\(cos\alpha.P\) (3)
từ (2),(3)
\(\Rightarrow sin\alpha.g-\mu.g.cos\alpha=a\)
\(\Rightarrow a\approx4,1\)m/s2
vận tốc lúc vật tại B
\(v^2-v_0^2=2as_{AB}\Rightarrow v\approx2,875\)m/s