Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cơ năng ban đầu: \(W_1=mgh=mg.S.\sin30^0\)
Cơ năng ở chân mặt phẳng nghiêng: \(W_2=\dfrac{1}{2}mv^2\)
Bảo toàn cơ năng: \(W_1=W_2\)
\(\Rightarrow v=\sqrt{2gS.\sin 30^0}=\sqrt{2.10.10.\sin 30^0}=10(m/s)\)
1,
Cơ năng của vật tại vị trí thả
\(W_1=W_{đ1}+W_{t1}=mgh=0,4.10.20=80\)
thế năng ở vị trí C là
\(W_{t2}=0,4.10.15=60\)
theo định luật bảo toàn cơ năng có
\(W_{đ2}=W_{đ1}-W_{t2}=80-60=20\)
chọn gốc thế năng tại mặt đất
chiều cao h của mặt phẳng nghiêng là
h=\(l.sin\alpha=1,25m\)
cơ năng của vật tại đỉnh mặt phẳng nghiêng
\(W_O=W_{t_O}+W_{đ_O}=m.g.h+0=\)75J
b) khi vật trượt tới giữa mặt phẳng nghiêng, độ cao lúc này là
\(h'=\dfrac{l}{2}.sin\alpha=0,625m\)
bảo toàn cơ năng: \(W_O=W_C\)
\(\Leftrightarrow75=m.g.h'+\dfrac{1}{2}.m.v^2\)
\(\Rightarrow v=\)\(\dfrac{5\sqrt{2}}{2}\)m/s (vận tốc khi trượt tới giữa mặt phẳng nghiêng)
khi vật trượt tới chân mặt phẳng nghiêng
\(W_B=W_{t_B}+W_{đ_B}=0+\dfrac{1}{2}.m.v_1^2\)
bảo toàn cơ năng: \(W_B=W_O\)
\(\Leftrightarrow75=\dfrac{1}{2}.m.v_1^2\Rightarrow v_1=5\)m/s (vận tốc khi trượt hết mặt phẳng nghiêng)
c)
biến thiên động năng
\(0-\dfrac{1}{2}.m..v_0^2=A_{F_{ms}}\)
\(\Leftrightarrow-75=F_{ms}.s.cos180^0\)
\(\Rightarrow s=\)3,75m
vậy quãng đường vật trượt trên mặt phẳng nghiêng là 3,75m
30 y x P Q
Chọn hệ trục tọa độ \(Oxy\) gồm:
- \(Oy\) vuông góc với mặt phẳng nghiêng
- \(Ox\) song song với mặt phẳng nghiêng
- Lấy gốc thời gian lúc vật bắt đầu trượt xuống mặt phẳng nghiêng
Các lực tác dụng lên vật khi nó trượt xuống mặt phẳng nghiêng:
+ Trọng lực \(\overrightarrow{P}\), phản lực \(\overrightarrow{Q}\), lực ma sát \(\overrightarrow{F_{ms}}\)
Áp dụng định luật II Newton cho vật: \(\overrightarrow{a}=\dfrac{\overrightarrow{P}+\overrightarrow{Q}+\overrightarrow{F_{ms}}}{m}\) \(\left(1\right)\)
Chiếu (1) lên \(Ox\): \(a=\dfrac{P.\sin30-F_{ms}}{m}\) \(\left(2\right)\)
Mà \(F_{ms}=\mu.N=\mu.Q\)
Chiếu (1) lên \(Oy\): \(O=\dfrac{-P.\cos30+Q}{m}\)
\(\Rightarrow Q=P.\cos30\)
\(\Rightarrow F_{ms}=\mu.P.\cos30\)
Thay vào (2): \(a=\dfrac{P.\sin30-\mu.P.\cos30}{m}\) \(=\dfrac{m.g\left(\sin30-\mu.\cos30\right)}{m}\)
\(\Rightarrow a=g\left(\sin30-\mu.\cos30\right)\) \(=10\left(\dfrac{1}{2}-0,2.\dfrac{\sqrt{3}}{2}\right)=3,268\) (m/s2)
Ta có: \(S=\dfrac{1}{2}at^2\Rightarrow t=\sqrt{\dfrac{2S}{a}}\left(3\right)\)
Áp dụng hệ thức lượng ta có:
\(\sin30=\dfrac{h}{l}\Rightarrow h=\sin30.l\) \(=sin30.5=2,5\left(m\right)\)
Thay vào (3) ta có: \(t=\sqrt{\dfrac{2S}{a}}=\sqrt{\dfrac{2.2,5}{3,286}}\approx1,233\left(s\right)\)
Vậy vận tốc ở chân mặt phẳng nghiêng là 1,233 giây
a) Bảo toàn năng lượng: \(mgh=\dfrac{1}{2}mv^2\Rightarrow v=...\)
b) Khi động năng bằng thế năng thì thế năng bằng một nửa cơ năng:\(mgh'=\dfrac{1}{2}mgh\Rightarrow h'=...\)
c) Dùng biến thiên động năng: \(0-\dfrac{1}{2}mv^2=\mu mg.s\Rightarrow s=...\)
theo định luật II niu tơn
\(\overrightarrow{F_{ms}}+\overrightarrow{P}+\overrightarrow{N}=m.\overrightarrow{a}\)
chiếu lên trục Ox phương song song với mặt phẳng nghiêng chiều dương cùng chiều chuyển động
\(-F_{ms}-sin\alpha.P=m.a\)
(N=cos\(\alpha\).P)
\(\Rightarrow a=\)\(-5-\sqrt{3}\)
quãng đường vật đi được đến khi dừng lại là
\(v^2-v_0^2=2as\)
\(\Rightarrow s\approx29,7\)m
vậy đi hết dốc
Đề bài không cho khối lượng nên mình cũng đang thắc mắc . Các bạn giúp mình nha.