\(\overrightarrow{a}\)=(1;2) , \(\overrig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 11 2021

1.

Do tung độ của 2 vecto cùng dấu nên 2 vecto cùng hướng khi tọa độ của chúng tương ứng tỉ lệ, hay:

\(\dfrac{m}{1}=\dfrac{6}{2}\Rightarrow m=3\)

Do \(3\in\left(2;4\right)\) nên B là đáp án đúng

2.

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(2;2\right)\\\overrightarrow{AC}=\left(-6;m-2\right)\end{matrix}\right.\)

3 điểm A,B,C thẳng hàng khi hai vecto trên cùng phương hay tọa độ của chúng tương ứng tỉ lệ:

\(\dfrac{-6}{2}=\dfrac{m-2}{2}\Rightarrow m-2=-6\Rightarrow m=-4\in\left(-5;-2\right)\)

10 tháng 12 2022

a: \(\Leftrightarrow\left\{{}\begin{matrix}x+3y=5\\2x-y=6\end{matrix}\right.\)=>x=23/7; y=4/7

b: \(2\cdot\overrightarrow{A}+3\cdot\overrightarrow{B}\)

\(=\left(2\cdot1+3\cdot3;2\cdot2+3\cdot\left(-1\right)\right)\)

=(11;1)

c: \(\overrightarrow{A}\cdot\overrightarrow{B}=\left(3;-2\right)\)

NV
22 tháng 11 2019

\(\left\{{}\begin{matrix}\overrightarrow{c}=\left(-m+5n;2m+n\right)\\\overrightarrow{v}=\left(9;4\right)\end{matrix}\right.\)

\(\overrightarrow{c}.\overrightarrow{v}=0\Leftrightarrow9\left(-m+5n\right)+4\left(2m+n\right)=0\)

\(\Leftrightarrow49n-m=0\Rightarrow m=49n\)

Mọi m;n thỏa mãn đẳng thức trên đều được

1, Trong mặt phẳng tọa độ Oxy , cho B(2;3) , C (-1 ; 2) . Điểm M thỏa mãn \(2\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\) . Tọa độ điểm M là ? 2. Cho \(\overrightarrow{a}=\left(1;2\right)\) và \(\overrightarrow{b}=\left(3;4\right)\) Vecto \(\overrightarrow{m}=2\overrightarrow{a}+3\overrightarrow{b}\) có tọa độ là ? 3. Cho A(3;-2) , B (-5;4 ) và C \(\left(\frac{1}{3};0\right)\). Ta có \(\overrightarrow{AB}=x\overrightarrow{AC}\) tìm giá trị...
Đọc tiếp

1, Trong mặt phẳng tọa độ Oxy , cho B(2;3) , C (-1 ; 2) . Điểm M thỏa mãn \(2\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\) . Tọa độ điểm M là ?
2. Cho \(\overrightarrow{a}=\left(1;2\right)\)\(\overrightarrow{b}=\left(3;4\right)\) Vecto \(\overrightarrow{m}=2\overrightarrow{a}+3\overrightarrow{b}\) có tọa độ là ?

3. Cho A(3;-2) , B (-5;4 ) và C \(\left(\frac{1}{3};0\right)\). Ta có \(\overrightarrow{AB}=x\overrightarrow{AC}\) tìm giá trị của x

4, Trên trục x'Ox cho 2 điểm A,B lân lượt có tọa dộ là a, b. M là điểm thỏa mãn \(\overrightarrow{MA}=k\overrightarrow{MB},k\ne1\). Khi đó tọa độ điểm M là

5, Trong mặt phẳng Oxy , cho \(\overrightarrow{a}=\left(2,1\right);\overrightarrow{b}=\left(3,4\right);\overrightarrow{c}=\left(7,2\right)\)Tìm m,n để A,B,C thẳng hàng
*Minh mới học phần này cũng chưa hiểu lắm nên các bạn giải kĩ giúp mình. Cảm ơn nhiều <3

2
18 tháng 8 2019

Hok nhanh phết, chưa j đã đến phần toạ độ vecto r

1/ \(\overrightarrow{MB}=\left(x_B-x_M;y_B-y_M\right)=\left(2-x_M;3-y_M\right)\)

\(\Rightarrow2\overrightarrow{MB}=\left(4-2x_M;6-2y_M\right)\)

\(\overrightarrow{3MC}=\left(3x_C-3x_M;3y_C-3y_M\right)=\left(-3-3x_M;6-3y_M\right)\)

\(\Rightarrow2\overrightarrow{MB}+3\overrightarrow{MC}=\left(4-2x_M-3-3x_M;6-2y_M+6-3y_M\right)=0\)

\(\Leftrightarrow\left(1-5x_M;12-5y_M\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-5x_M=0\\12-5y_M=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_M=\frac{1}{5}\\y_M=\frac{12}{5}\end{matrix}\right.\Rightarrow M\left(\frac{1}{5};\frac{12}{5}\right)\)

18 tháng 8 2019

2/ \(\overrightarrow{m}=2\left(1;2\right)+3\left(3;4\right)=\left(2+9;4+12\right)=\left(11;16\right)\)

3/ \(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(-5-3;4+2\right)=\left(-8;6\right)\)

\(\overrightarrow{AC}=\left(x_C-x_A;y_C-y_A\right)=\left(\frac{1}{3}-3;0+2\right)=\left(-\frac{8}{3};2\right)\)

\(\Rightarrow x=\frac{\overrightarrow{AB}}{\overrightarrow{AC}}=\frac{\left(-8;6\right)}{\left(-\frac{8}{3};2\right)}=3\)

Câu 4 tương tự

Câu 5 vt lại đề bài nhé bn, nghe nó vô lý sao á, m,n ở đâu ra vậy, cả A,B,C nx

NV
21 tháng 8 2020

\(3\overrightarrow{MA}+2\overrightarrow{MC}=0\Leftrightarrow3\overrightarrow{MA}+2\overrightarrow{MA}+2\overrightarrow{AC}=0\)

\(\Leftrightarrow5\overrightarrow{MA}=-2\overrightarrow{AC}\Leftrightarrow\overrightarrow{MA}=-\frac{2}{5}\overrightarrow{AC}\Leftrightarrow\overrightarrow{AM}=\frac{2}{5}\overrightarrow{AC}\)

\(\overrightarrow{NA}-2\left(\overrightarrow{NA}+\overrightarrow{AB}\right)=0\Leftrightarrow\overrightarrow{NA}=-2\overrightarrow{AB}\)

\(\overrightarrow{NG}=\overrightarrow{NA}+\overrightarrow{AG}=-2\overrightarrow{AB}+\frac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=-\frac{5}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)

\(\overrightarrow{GM}=\overrightarrow{GA}+\overrightarrow{AM}=-\frac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)+\frac{2}{5}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{GM}=-\frac{1}{3}\overrightarrow{AB}+\frac{1}{15}\overrightarrow{AC}=\frac{1}{5}\left(-\frac{5}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\right)=\frac{1}{5}\overrightarrow{NG}\)

\(\Rightarrow\overrightarrow{NG}=5\overrightarrow{GM}\)

14 tháng 12 2018

bài 2)

xét \(2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}-4\overrightarrow{OD}=2\left(\overrightarrow{OA}+\overrightarrow{OD}\right)+\left(\overrightarrow{OB}-\overrightarrow{OD}\right)+\left(\overrightarrow{OC}-\overrightarrow{OD}\right)\)

\(=2\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}=2\overrightarrow{DA}+2\overrightarrow{DM}\) ( Vì M là trung điểm của BC )

\(=2\left(\overrightarrow{DA}+\overrightarrow{DM}\right)=\overrightarrow{0}\) ( Vì D là trung điểm của AM )

=> đpcm

Câu 4:

\(\overrightarrow{AB}=\left(-6;-2\right)\)

\(\overrightarrow{AH}=\left(m+1;m+1\right)\)

Để A,B,H thẳng hàng thì \(\dfrac{m+1}{-6}=\dfrac{m+1}{-2}\)

=>1/-6=1/-2(loại)

22 tháng 11 2019

a/ Để tứ giác ADCB là hbh

\(\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\Leftrightarrow\left(x_D-x_A;y_D-y_A\right)=\left(x_C-x_B;y_C-y_B\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_D-1=4+2\\y_D-2=4-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=7\\y_D=0\end{matrix}\right.\Rightarrow D\left(7;0\right)\)

b/ Có phải đề bài là:

\(2\overrightarrow{EA}-4\overrightarrow{EB}+\overrightarrow{EC}=\overrightarrow{0}?\)

\(\Rightarrow2\left(x_A-x_E;y_A-y_E\right)-4\left(x_B-x_E;y_B-y_E\right)+\left(x_C-x_E;y_C-y_E\right)=0\)

\(\Leftrightarrow2\left(1-x_E;2-y_E\right)-4\left(-2-x_E;6-y_E\right)+\left(4-x_E;4-y_E\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}2-2x_E+8+4x_E+4-x_E=0\\4-2y_E-24+4y_E+4-y_E=0\end{matrix}\right.\)

Bạn tự giải nốt

28 tháng 11 2019

Kết quả bài này là bao nhiêu vậy ạ?