K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2018

a,\(A=2^{200}-2^{199}-2^{198}-...-2-1\)

\(2A=2^{201}-2^{200}-...-2^2-2\)

\(2A-A=A=2^{101}+1\)

b,\(b=2^3+4^3+...+20^3\)

\(b=2^3\left(1^3+2^3+...+10^3\right)\)

\(b=8.2025\)

\(b=16200\)

4 tháng 12 2017

S=\(2^2+4^2+....+20^2\)

\(S=2^2.1^2+2^2.2^2+2^2.3^2+.....+2^2.10^2\)

S=\(2^2\left(1^2+2^2+...+10^2\right)\)

S=4.385=1540

4 tháng 12 2017

câu b tương tự

26 tháng 6 2018

Giải:

a) \(4.2^5:\left(2^3.\dfrac{1}{16}\right)\)

\(=4.2^5:\dfrac{2^3}{16}\)

\(=2^2.2^5:\dfrac{2^3}{2^4}\)

\(=2^7:\dfrac{1}{2}\)

\(=2^6=64\)

Vậy ...

b) \(\dfrac{8^5.10^4.25^3}{16^4.625^3}\)

\(=\dfrac{2^{15}.2^4.5^4.5^6}{2^8.5^{12}}\)

\(=\dfrac{2^{19}.5^{10}}{2^8.5^{12}}\)

\(=\dfrac{2^{11}}{5^2}\)

Vậy ...

c) \(C=2^{200}-2^{199}+2^{198}-2^{197}+...+2^2-2\)

\(\Leftrightarrow C=\left(2^{200}-2^{199}\right)+\left(2^{198}-2^{197}\right)+...+\left(2^2-2\right)\)

\(\Leftrightarrow C=2^{199}\left(2-1\right)+2^{197}\left(2-1\right)+...+2\left(2-1\right)\)

\(\Leftrightarrow C=2^{199}+2^{197}+...+2\)

\(\Leftrightarrow4C=2^{201}+2^{199}+...+2^3\)

\(\Leftrightarrow3C=4C-C=2^{201}-2\)

\(\Leftrightarrow C=\dfrac{2^{201}-2}{3}\)

Vậy ...

29 tháng 6 2018

Hình như sai rồi

NM
20 tháng 3 2021

Đặt \(A=2^0+2^1+..+2^{100}\)

\(\Rightarrow2A=2^1+2^2+..+2^{101}\)

lấy hiệu hai phương trình ta có

\(A=2^{101}-2^0=2^{101}-1\)

.\(B=5^1+5^2+..+5^{200}\)

\(\Rightarrow5B=5^2+5^3+..+5^{201}\)

Lấy hiệu hai phương trình ta có :

\(4B=5^{201}-5\Rightarrow B=\frac{5^{201}-5}{4}\)

25 tháng 9 2018

2) \(A=2+2^2+2^3+2^4+...+2^{10}\)

\(2A=2^2+2^3+2^4+...+2^{11}\) . Mà 2A - A =A nên:

\(A=\left(2^2+2^3+2^4+...2^{11}\right)-\left(2+2^2+2^3+2^4+...+2^{10}\right)\) hay

\(A=2^{11}-2\Leftrightarrow A+2=2^{11}^{^{\left(đpcm\right)}}\)

a) 2n.4= 128

=> 2n=128:4

=>2n=32

Mà: 25=32

=> x=5