K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2016

Vl tao chưa lm cơ

6 tháng 1 2017

dễ

17 tháng 2 2016

Bài 2:

a) Ta có:

\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)

\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)

Vậy \(S\) \(\text{⋮}\) \(-20\)

17 tháng 2 2016

Bài 1:

Ta có:

\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)

\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)

\(=\left(-12\right).m^2.3.n^3\)

\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)

Xét: \(m^2\ge0\) với V m

3>0 nên \(m^2.3\ge0\) với V m

Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)

-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)

Vậy với n<0 và mọi m thì \(A\ge0\)

 

14 tháng 2 2016

A=1+4+42+43+...+499

=>4A=4+42+43+44+...+4100

=>4A-A=(4+42+43+44+...+4100)-(1+4+42+43+...+499)

=>3A=4100-1 

=>A=\(\frac{4^{100}-1}{3}\) < 4100

=>A<B

 

14 tháng 2 2016

     \(A=1+4+4^2+4^3+...+4^{99}\)

=> \(4A=4+4^2+4^3+4^4+...+4^{100}\)

=> \(4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\)

=> \(3A=4^{100}-1\)

=> \(A=\frac{4^{100}-1}{3}\)

Ta có : \(B=4^{100}\)   =>  \(\frac{B}{3}=\frac{4^{100}}{3}\)

Vì    \(4^{100}-1<4^{100}\)     =>   \(\frac{4^{100}-1}{3}<\frac{4^{100}}{3}\)    =>  \(A<\frac{B}{3}\)   (đpcm)

18 tháng 3 2016

Đặt A= \(\frac{3}{2^2}\) . \(\frac{8}{3^2}\) . \(\frac{15}{4^2}\). ... . \(\frac{99}{10^{10}}\)

\(\frac{1.3}{2.2}\) . \(\frac{2.4}{3.3}\) . \(\frac{3.5}{4.4}\) . ... . \(\frac{9.11}{10.10}\)

\(\frac{1.2.3.4.....9}{2.3.4.5.6.....9.10}\) . \(\frac{3.4.....9.10.11}{2.3.4.5.6.....9.10}\) 

\(\frac{1}{10}\) . \(\frac{11}{2}\) = \(\frac{11}{20}\)

26 tháng 1 2016

\(3A=3+3^2+3^3+....+3^{21}\Leftrightarrow3A-A=2A=3^{21}-1\Rightarrow A=\frac{3^{21}-1}{2}\)

\(B-A=\frac{3^{21}}{2}-\frac{3^{21}-1}{2}=\frac{1}{2}\)

26 tháng 1 2016

1/2 nha hi hi hi hi vui

11 tháng 1 2016

\(S=\left(1.2\right)^2+\left(2.2\right)^2+\left(2\cdot3\right)^2+...+\left(2\cdot10\right)^2\)

    \(=1^2\cdot2^2+2^2\cdot2^2+2^2\cdot3^2+...+2^2+10^2\)

    \(=2^2\cdot\left(1^2+2^2+3^2+...+10^2\right)\)

    \(=2^2\cdot385=1540\)